-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathtxt2img_mjm.py
executable file
·197 lines (173 loc) · 7.77 KB
/
txt2img_mjm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# https://github.com/Woolverine94/biniou
# txt2img_mjm.py
import gradio as gr
import os
from diffusers import DiffusionPipeline
from compel import Compel, ReturnedEmbeddingsType
import torch
import random
from ressources.gfpgan import *
import tomesd
from diffusers.schedulers import AysSchedules
device_label_txt2img_mjm, model_arch = detect_device()
device_txt2img_mjm = torch.device(device_label_txt2img_mjm)
# Gestion des modèles
model_path_txt2img_mjm = "./models/Midjourney_mini/"
model_path_txt2img_mjm_safetychecker = "./models/Stable_Diffusion/"
os.makedirs(model_path_txt2img_mjm, exist_ok=True)
model_list_txt2img_mjm = []
for filename in os.listdir(model_path_txt2img_mjm):
f = os.path.join(model_path_txt2img_mjm, filename)
if os.path.isfile(f) and (filename.endswith('.ckpt') or filename.endswith('.safetensors')):
model_list_txt2img_mjm.append(f)
model_list_txt2img_mjm_builtin = [
"openskyml/midjourney-mini",
]
for k in range(len(model_list_txt2img_mjm_builtin)):
model_list_txt2img_mjm.append(model_list_txt2img_mjm_builtin[k])
# Bouton Cancel
stop_txt2img_mjm = False
def initiate_stop_txt2img_mjm() :
global stop_txt2img_mjm
stop_txt2img_mjm = True
def check_txt2img_mjm(pipe, step_index, timestep, callback_kwargs) :
global stop_txt2img_mjm
if stop_txt2img_mjm == False :
# result_preview = preview_image(step, timestep, latents, pipe_txt2img_mjm)
return callback_kwargs
elif stop_txt2img_mjm == True :
print(">>>[Midjourney-mini 🖼️ ]: generation canceled by user")
stop_txt2img_mjm = False
try:
del ressources.txt2img_mjm.pipe_txt2img_mjm
except NameError as e:
raise Exception("Interrupting ...")
return
@metrics_decoration
def image_txt2img_mjm(
modelid_txt2img_mjm,
sampler_txt2img_mjm,
prompt_txt2img_mjm,
negative_prompt_txt2img_mjm,
num_images_per_prompt_txt2img_mjm,
num_prompt_txt2img_mjm,
guidance_scale_txt2img_mjm,
num_inference_step_txt2img_mjm,
height_txt2img_mjm,
width_txt2img_mjm,
seed_txt2img_mjm,
use_gfpgan_txt2img_mjm,
nsfw_filter,
tkme_txt2img_mjm,
clipskip_txt2img_mjm,
use_ays_txt2img_mjm,
progress_txt2img_mjm=gr.Progress(track_tqdm=True)
):
print(">>>[Midjourney-mini 🖼️ ]: starting module")
# global pipe_txt2img_mjm
nsfw_filter_final, feat_ex = safety_checker_sd(model_path_txt2img_mjm_safetychecker, device_txt2img_mjm, nsfw_filter)
if clipskip_txt2img_mjm == 0:
clipskip_txt2img_mjm = None
if (num_inference_step_txt2img_mjm >= 10) and use_ays_txt2img_mjm:
if is_sdxl(modelid_txt2img_mjm):
sampling_schedule_txt2img_mjm = AysSchedules["StableDiffusionXLTimesteps"]
sampler_txt2img_mjm = "DPM++ SDE"
else:
sampling_schedule_txt2img_mjm = AysSchedules["StableDiffusionTimesteps"]
sampler_txt2img_mjm = "DPM++ 2M SDE"
num_inference_step_txt2img_mjm = 10
else:
sampling_schedule_txt2img_mjm = None
if modelid_txt2img_mjm[0:9] == "./models/" :
pipe_txt2img_mjm = DiffusionPipeline.from_single_file(
modelid_txt2img_mjm,
torch_dtype=model_arch,
# use_safetensors=True,
load_safety_checker=False if (nsfw_filter_final == None) else True,
local_files_only=True if offline_test() else None,
# safety_checker=nsfw_filter_final,
# feature_extractor=feat_ex,
)
else :
pipe_txt2img_mjm = DiffusionPipeline.from_pretrained(
modelid_txt2img_mjm,
cache_dir=model_path_txt2img_mjm,
torch_dtype=model_arch,
# use_safetensors=True,
safety_checker=nsfw_filter_final,
feature_extractor=feat_ex,
resume_download=True,
local_files_only=True if offline_test() else None,
)
pipe_txt2img_mjm = schedulerer(pipe_txt2img_mjm, sampler_txt2img_mjm)
pipe_txt2img_mjm.enable_attention_slicing("max")
tomesd.apply_patch(pipe_txt2img_mjm, ratio=tkme_txt2img_mjm)
if device_label_txt2img_mjm == "cuda" :
pipe_txt2img_mjm.enable_sequential_cpu_offload()
else :
pipe_txt2img_mjm = pipe_txt2img_mjm.to(device_txt2img_mjm)
pipe_txt2img_mjm.enable_vae_slicing()
if seed_txt2img_mjm == 0:
random_seed = random.randrange(0, 10000000000, 1)
final_seed = random_seed
else:
final_seed = seed_txt2img_mjm
generator = []
for k in range(num_prompt_txt2img_mjm):
generator.append([torch.Generator(device_txt2img_mjm).manual_seed(final_seed + (k*num_images_per_prompt_txt2img_mjm) + l ) for l in range(num_images_per_prompt_txt2img_mjm)])
prompt_txt2img_mjm = str(prompt_txt2img_mjm)
negative_prompt_txt2img_mjm = str(negative_prompt_txt2img_mjm)
if prompt_txt2img_mjm == "None":
prompt_txt2img_mjm = ""
if negative_prompt_txt2img_mjm == "None":
negative_prompt_txt2img_mjm = ""
compel = Compel(tokenizer=pipe_txt2img_mjm.tokenizer, text_encoder=pipe_txt2img_mjm.text_encoder, truncate_long_prompts=False, device=device_txt2img_mjm)
conditioning = compel.build_conditioning_tensor(prompt_txt2img_mjm)
neg_conditioning = compel.build_conditioning_tensor(negative_prompt_txt2img_mjm)
[conditioning, neg_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, neg_conditioning])
final_image = []
final_seed = []
for i in range (num_prompt_txt2img_mjm):
image = pipe_txt2img_mjm(
prompt_embeds=conditioning,
negative_prompt_embeds=neg_conditioning,
height=height_txt2img_mjm,
width=width_txt2img_mjm,
num_images_per_prompt=num_images_per_prompt_txt2img_mjm,
num_inference_steps=num_inference_step_txt2img_mjm,
timesteps=sampling_schedule_txt2img_mjm,
guidance_scale=guidance_scale_txt2img_mjm,
generator=generator[i],
clip_skip=clipskip_txt2img_mjm,
callback_on_step_end=check_txt2img_mjm,
callback_on_step_end_tensor_inputs=['latents'],
).images
for j in range(len(image)):
seed_id = random_seed + i*num_images_per_prompt_txt2img_mjm + j if (seed_txt2img_mjm == 0) else seed_txt2img_mjm + i*num_images_per_prompt_txt2img_mjm + j
savename = name_seeded_image(seed_id)
if use_gfpgan_txt2img_mjm == True :
image[j] = image_gfpgan_mini(image[j])
image[j].save(savename)
final_image.append(savename)
final_seed.append(seed_id)
print(f">>>[Midjourney-mini 🖼️ ]: generated {num_prompt_txt2img_mjm} batch(es) of {num_images_per_prompt_txt2img_mjm}")
reporting_txt2img_mjm = f">>>[Midjourney-mini 🖼️ ]: "+\
f"Settings : Model={modelid_txt2img_mjm} | "+\
f"Sampler={sampler_txt2img_mjm} | "+\
f"Steps={num_inference_step_txt2img_mjm} | "+\
f"CFG scale={guidance_scale_txt2img_mjm} | "+\
f"Size={width_txt2img_mjm}x{height_txt2img_mjm} | "+\
f"GFPGAN={use_gfpgan_txt2img_mjm} | "+\
f"Token merging={tkme_txt2img_mjm} | "+\
f"CLIP skip={clipskip_txt2img_mjm} | "+\
f"AYS={use_ays_txt2img_mjm} | "+\
f"nsfw_filter={bool(int(nsfw_filter))} | "+\
f"Prompt={prompt_txt2img_mjm} | "+\
f"Negative prompt={negative_prompt_txt2img_mjm} | "+\
f"Seed List="+ ', '.join([f"{final_seed[m]}" for m in range(len(final_seed))])
print(reporting_txt2img_mjm)
exif_writer_png(reporting_txt2img_mjm, final_image)
del nsfw_filter_final, feat_ex, pipe_txt2img_mjm, generator, compel, conditioning, neg_conditioning, image
clean_ram()
print(f">>>[Midjourney-mini 🖼️ ]: leaving module")
return final_image, final_image