-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
195 lines (168 loc) · 5.8 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import sys
import fire
import torch
from peft import PeftModel
import transformers
import gradio as gr
from img2text import imgcap
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "tloen/alpaca-lora-7b",
):
assert base_model, (
"Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
img,
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
imgtext = imgcap(img)
# print(imgtext)
instruction = "Given the following image. " + instruction
input = 'The image is ' + imgtext[0]['generated_text'] + '. '
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Response:")[1].strip()
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Image(
type="pil", label="Image"
),
gr.components.Textbox(
lines=2, label="Chat", placeholder="Ask me anything"
),
# gr.components.Textbox(lines=2, label="Input", placeholder="none"),
# gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
# gr.components.Slider(
# minimum=0, maximum=100, step=1, value=40, label="Top k"
# ),
# gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
# gr.components.Slider(
# minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
# ),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="Alpaca-GlassOff",
description="Mini Image-acceptable Chat AI can run on your own laptop. The chat model is based on Alpaca. The server may break down sometimes, give it another try.",
).launch(share=True)
# Old testing code follows.
# # testing code for readme
# img = 'https://ankur3107.github.io/assets/images/image-captioning-example.png'
# for instruction in [
# "What is in the iamge.",
# "Write me a novel plot based on the image.",
# "Where I can find an image like this.",
# "Is there any human in the image?",
# "How many people in the image?",
# "Tell me the most salient object in the image.",
# "Describe the image using five words.",
# ]:
# print("Instruction:", instruction)
# print("Response:", evaluate(img, instruction))
# print()
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
"""
if __name__ == "__main__":
fire.Fire(main)