-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBBBacktester.py
191 lines (153 loc) · 6.78 KB
/
BBBacktester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import numpy as np
import pandas as pd
import seaborn as sns
from oandapyV20 import API
from dotenv import load_dotenv
import matplotlib.pyplot as plt
from scipy.optimize import brute
import oandapyV20.endpoints.instruments as instruments
load_dotenv()
oanda_api_key = os.getenv('OANDA_API_KEY')
class BBBacktester:
''' Class for the vectorized backtesting of Mean Reversion-based trading strategies (Bollinger Bands).
Attributes
==========
symbol: str
ticker symbol with which to work with
SMA: int
time window for SMA
dev: int
distance for Lower/Upper Bands in Standard Deviation units
start: str
start date for data retrieval
end: str
end date for data retrieval
tc: float
proportional transaction costs per trade
Methods
=======
get_data:
retrieves and prepares the data
set_parameters:
sets one or two new parameters for SMA and dev
test_strategy:
runs the backtest for the Mean Reversion-based strategy
plot_results:
plots the performance of the strategy compared to buy and hold
update_and_run:
updates parameters and returns the negative absolute performance (for minimization algorithm)
optimize_parameters:
implements a brute force optimization for the two parameters
'''
def __init__(self, symbol, SMA, dev, start, end, granularity, tc = 0.0):
self.symbol = symbol
self.SMA = SMA
self.dev = dev
self.start = start
self.end = end
self.granularity = granularity
self.tc = tc
self.results = None
self.data = None
self.get_data()
def __repr__(self):
rep = "BBBacktester(symbol = {}, SMA = {}, dev = {}, start = {}, end = {})"
return rep.format(self.symbol, self.SMA, self.dev, self.start, self.end)
def get_data(self):
''' Retrieves and prepares the data from Oanda.
'''
client = API(access_token= oanda_api_key)
# Define the request parameters
params = {
"from": self.start,
"to": self.end,
"granularity": self.granularity, # Daily granularity, adjust as needed
}
# Fetch historical forex data from OANDA
request = instruments.InstrumentsCandles(instrument=self.symbol, params=params)
client.request(request)
response = request.response
# Isolate candlestick data from API response
candles = response['candles']
data_list = []
for candle in candles:
time = pd.to_datetime(candle['time'])
open_price = float(candle['mid']['o'])
high_price = float(candle['mid']['h'])
low_price = float(candle['mid']['l'])
close_price = float(candle['mid']['c'])
volume = int(candle['volume'])
data_list.append([time, open_price, high_price, low_price, close_price, volume])
# Create a pandas DataFrame
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
data = pd.DataFrame(data_list, columns=columns)
# Set the 'Date' column as the index
data.set_index('Date', inplace=True)
data["returns"] = np.log(data["Close"] / data["Close"].shift(1))
data["SMA"] = data["Close"].rolling(self.SMA).mean()
data["Lower"] = data["SMA"] - data["Close"].rolling(self.SMA).std() * self.dev
data["Upper"] = data["SMA"] + data["Close"].rolling(self.SMA).std() * self.dev
self.data = data
def set_parameters(self, SMA = None, dev = None):
''' Updates parameters and resp. time series.
'''
if SMA is not None:
self.SMA = SMA
self.data["SMA"] = self.data["Close"].rolling(self.SMA).mean()
self.data["Lower"] = self.data["SMA"] - self.data["Close"].rolling(self.SMA).std() * self.dev
self.data["Upper"] = self.data["SMA"] + self.data["Close"].rolling(self.SMA).std() * self.dev
if dev is not None:
self.dev = dev
self.data["Lower"] = self.data["SMA"] - self.data["Close"].rolling(self.SMA).std() * self.dev
self.data["Upper"] = self.data["SMA"] + self.data["Close"].rolling(self.SMA).std() * self.dev
def test_strategy(self):
''' Backtests the trading strategy.
'''
data = self.data.copy().dropna()
data["distance"] = data["Close"] - data.SMA
data["position"] = np.where(data["Close"] < data.Lower, 1, np.nan)
data["position"] = np.where(data["Close"] > data.Upper, -1, data["position"])
data["position"] = np.where(data.distance * data.distance.shift(1) < 0, 0, data["position"])
data["position"] = data.position.ffill().fillna(0)
data["strategy"] = data.position.shift(1) * data["returns"]
data.dropna(inplace = True)
# determine when a trade takes place
data["trades"] = data.position.diff().fillna(0).abs()
# subtract transaction costs from return when trade takes place
data.strategy = data.strategy - data.trades * self.tc
data["creturns"] = data["returns"].cumsum().apply(np.exp)
data["cstrategy"] = data["strategy"].cumsum().apply(np.exp)
self.results = data
# absolute performance of the strategy
perf = data["cstrategy"].iloc[-1]
# out-/underperformance of strategy
outperf = perf - data["creturns"].iloc[-1]
return [perf, outperf, self.results]
def plot_results(self):
''' Plots the cumulative performance of the trading strategy
compared to buy and hold.
'''
if self.results is None:
print("No results to plot yet. Run a strategy.")
else:
title = "{} | SMA = {} | dev = {} | TC = {}".format(self.symbol, self.SMA, self.dev, self.tc)
self.results[["creturns", "cstrategy"]].plot(title=title, figsize=(12, 8))
def update_and_run(self, boll):
''' Updates parameters and returns the negative absolute performance (for minimization algorithm).
Parameters
==========
Params: tuple
parameter tuple with SMA and dist
'''
self.set_parameters(int(boll[0]), int(boll[1]))
return -self.test_strategy()[0]
def optimize_parameters(self, SMA_range, dev_range):
''' Finds global maximum given the parameter ranges.
Parameters
==========
SMA_range, dist_range: tuple
tuples of the form (start, end, step size)
'''
opt = brute(self.update_and_run, (SMA_range, dev_range), finish=None)
return opt, -self.update_and_run(opt)