-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun_pretrain_distributed_gpt3.py
427 lines (353 loc) · 16.8 KB
/
run_pretrain_distributed_gpt3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
'''
* Copyright (c) 2023, mPLUG.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from typing import Iterable
from models.distributed_gpt3 import DistributedGPT3_Pretrain
from models.modeling_distributed_gpt3 import DistributedGPT3Tokenizer
import utils
from utils import NativeScalerWithGradNormCount as NativeScaler
from dataset import create_dataset, create_sampler, create_loader
from optim import create_optimizer, create_two_optimizer
from optim.optim_factory import get_parameter_groups
import random
from megatron_util import mpu
mpu.get_model_parallel_group = mpu.get_tensor_model_parallel_group
mpu.get_model_parallel_world_size = mpu.get_tensor_model_parallel_world_size
mpu.get_model_parallel_rank = mpu.get_tensor_model_parallel_rank
mpu.get_model_parallel_src_rank = mpu.get_tensor_model_parallel_src_rank
import warnings
warnings.filterwarnings("ignore")
def get_loss_scale_for_deepspeed(model):
optimizer = model.optimizer
loss_scale = None
if hasattr(optimizer, 'loss_scale'):
loss_scale = optimizer.loss_scale
elif hasattr(optimizer, 'cur_scale'):
loss_scale = optimizer.cur_scale
return loss_scale, optimizer._global_grad_norm
def train_one_epoch(model: torch.nn.Module, tokenizer: DistributedGPT3Tokenizer,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
num_training_steps_per_epoch: int, max_norm: float = 0, update_freq: int = 1,
log_writer=None, lr_scheduler=None, start_steps=None,
lr_schedule_values=None, wd_schedule_values=None, beta2_values=None, args=None,
global_rank=1, fp16=True):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, (video, text) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
start_time = time.time()
step = data_iter_step // update_freq
if step >= num_training_steps_per_epoch:
continue
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * \
param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
if beta2_values is not None:
param_group["betas"][1] = beta2_values[it] if it < len(beta2_values) else beta2_values[-1]
video = video.to(device, non_blocking=True)
# Note that we use <sep> as start_token and <|endoftext|> as the end_token for a sentence
text_input = tokenizer(text, padding='max_length', truncation=True, max_length=args.max_length, return_tensors="pt", add_special_tokens=True).to(device)
if loss_scaler is None:
if fp16:
video = video.half()
else:
video = video.bfloat16()
if loss_scaler is None:
loss_caption, loss_ita = model(video, text_input)
else:
with torch.cuda.amp.autocast():
loss_caption, loss_ita = model(video, text_input)
loss = loss_caption + loss_ita
loss_value = loss.item()
loss_list = [torch.zeros_like(loss) for _ in range(dist.get_world_size())]
dist.all_gather(loss_list, loss)
loss_list = torch.tensor(loss_list)
all_loss_mean_value = loss_list.mean().item()
metric_logger.update(all_loss_mean=all_loss_mean_value)
loss_list_isnan = torch.isnan(loss_list).any()
loss_list_isinf = torch.isinf(loss_list).any()
if loss_list_isnan or loss_list_isinf:
print(" ========== loss_isnan = {}, loss_isinf = {} ========== ".format(loss_list_isnan, loss_list_isinf))
if args.output_dir and args.auto_resume_iter:
utils.auto_load_model_iter(args=args, model=model)
continue
else:
exit()
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
loss_scale_value, grad_norm = get_loss_scale_for_deepspeed(model)
else:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(
optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
end_time = time.time()
metric_logger.update(loss_caption=loss_caption.item())
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss=loss_value)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
momentum = 1.0
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
momentum = min(momentum, group["betas"][1])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(momentum=momentum)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss_caption=loss_caption.item(), head="loss")
log_writer.update(loss_ita=loss_ita.item(), head="loss")
log_writer.update(all_rank_loss_mean=all_loss_mean_value, head="loss")
log_writer.update(loss=loss_value, head="loss")
log_writer.update(loss_scale=loss_scale_value, head="opt")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
log_writer.update(momentum=momentum, head="opt")
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.update(time=end_time - start_time, head="time")
log_writer.set_step()
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def main(args, config, ds_init):
utils.init_distributed_mode(args)
if ds_init is not None:
utils.create_ds_config(args)
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Dataset ####
print("Creating dataset")
datasets = [create_dataset('pretrain_video', config)]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
else:
samplers = [None]
data_loader = \
create_loader(datasets, samplers, batch_size=[args.batch_size], num_workers=[args.num_workers], is_trains=[True],
collate_fns=[None])[0]
num_training_steps_per_epoch = len(data_loader)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
# #### Model
print("Creating model")
tokenizer = DistributedGPT3Tokenizer(model_dir=config['text_decoder'])
model = DistributedGPT3_Pretrain(config=config, tokenizer=tokenizer)
# model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params (B):', n_parameters / 1e9)
total_batch_size = args.batch_size * utils.get_world_size()
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
if args.enable_deepspeed:
loss_scaler = None
optimizer_params = get_parameter_groups(
model, config["optimizer"]["weight_decay"], model.no_weight_decay(),
visual_backbone_scale=config.get('clip_model', False)
)
model, optimizer, _, _ = ds_init(
args=args, model=model, model_parameters=optimizer_params,
dist_init_required=not args.distributed,
mpu=mpu
)
else:
if args.distributed:
model.to(device)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu])
model_without_ddp = model.module
model._set_static_graph()
optimizer = create_optimizer(
args, model_without_ddp,
visual_backbone_scale=config.get('clip_model', False)
)
loss_scaler = NativeScaler()
print("optimizer = %s" % str(optimizer))
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
sched_type=args.lr_sched_type,
)
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
max_epochs = args.epochs
start_epoch = args.start_epoch if hasattr(args,'start_epoch') else 0
print(f"Start training for {max_epochs} epochs")
start_time = time.time()
for epoch in range(start_epoch, max_epochs):
if args.distributed:
data_loader.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
train_stats = train_one_epoch(
model,
tokenizer,
data_loader,
optimizer,
device,
epoch,
loss_scaler,
max_norm=args.clip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
update_freq=args.update_freq,
num_training_steps_per_epoch=num_training_steps_per_epoch,
global_rank=global_rank,
fp16=not args.bf16,
args=args
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == max_epochs:
utils.save_model(
args=args, model=model,
model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
# test_stats = evaluate_pt(data_loader_val, model, teacher, device, beit_like=not args.mae)
# print(f"Val loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.1f}%")
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
# **{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Pretrain.yaml')
parser.add_argument('--output_dir', default='Pretrain/')
parser.add_argument('--log_dir', default=None)
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
# Resume
parser.add_argument('--resume', default='')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--auto_resume_iter', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.set_defaults(auto_resume_iter=True)
# Other
parser.add_argument('--update_freq', default=1, type=int)
parser.add_argument('--bf16', action='store_true')
parser.add_argument('--save_ckpt_freq', default=1, type=int)
parser.add_argument('--enable_deepspeed',
action='store_true', default=False)
parser.add_argument('--zero_stage', default=1, type=int,
help='ZeRO optimizer stage (default: 0)')
known_args, _ = parser.parse_known_args()
if known_args.enable_deepspeed:
try:
import deepspeed
parser = deepspeed.add_config_arguments(parser)
ds_init = deepspeed.initialize
except:
print("Please install DeepSpeed")
exit(0)
else:
ds_init = None
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
args_opt = utils.AttrDict(config['optimizer'])
args_sche = utils.AttrDict(config['schedular'])
for name, val in args_opt.items():
if not hasattr(args, name) or getattr(args, name) is None:
setattr(args, name, val)
for name, val in args_sche.items():
if not hasattr(args, name) or getattr(args, name) is None:
setattr(args, name, val)
setattr(args, "max_length", config["max_length"])
setattr(args, "batch_size", config["batch_size"])
setattr(args, "num_workers", config["num_workers"])
config["image_res"] = json.load(open(config["visual_cfg"], 'r'))["img_size"]
config["num_frames"] = json.load(open(config["visual_cfg"], 'r'))["num_frames"]
config['clip_model'] = json.load(open(config["visual_cfg"], 'r')).get("clip_model", False)
if getattr(args, "log_dir") is None:
setattr(args, "log_dir", os.path.join(args.output_dir, "tensorboard_logs"))
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config, ds_init)