-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn.py
50 lines (38 loc) · 1.63 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# K-Nearest Neighbor
import load_data
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import (KNeighborsClassifier, NeighborhoodComponentsAnalysis)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
where = './user'
kestrox_data = load_data.get_data()
X_train, X_test, y_train, y_test = kestrox_data.ks_data(where)
all_data = load_data.get_data()
X, y = all_data.get_X_y(where)
n_neighbors = 3
random_state = 0
dim = len(X[0])
n_classes = len(np.unique(y))
pca = make_pipeline(StandardScaler(),
PCA(n_components=2, random_state=random_state))
lda = make_pipeline(StandardScaler(),
LinearDiscriminantAnalysis(n_components=2))
nca = make_pipeline(StandardScaler(),
NeighborhoodComponentsAnalysis(n_components=2,
random_state=random_state))
knn = KNeighborsClassifier(n_neighbors=n_neighbors)
dim_reduction_methods = [('PCA', pca), ('LDA', lda), ('NCA', nca)]
for i, (name, model) in enumerate(dim_reduction_methods):
plt.figure()
model.fit(X_train, y_train)
knn.fit(model.transform(X_train), y_train)
acc_knn = knn.score(model.transform(X_test), y_test)
X_embedded = model.transform(X)
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap='Set1')
plt.title("{}, KNN (k={})\nTest accuracy = {:.2f}".format(name, n_neighbors, acc_knn))
plt.show()