-
Notifications
You must be signed in to change notification settings - Fork 15
/
datasets.py
87 lines (70 loc) · 2.97 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import os.path
import torch.utils.data as data
from PIL import Image
import random
import torch
from torch.nn.functional import interpolate
Image.MAX_IMAGE_PIXELS = 1000000000
def make_dataset(root):
img_path = os.path.join(root, 'DUTS-TR-Image')
gt_path = os.path.join(root, 'DUTS-TR-Mask')
gt_path = os.path.join(root, 'gt')
img_list = [os.path.splitext(f)[0]
for f in os.listdir(gt_path) if f.endswith('.png')]
return [(os.path.join(img_path, img_name + '.jpg'),
os.path.join(gt_path, img_name + '.png')) for img_name in img_list]
class ImageFolder(data.Dataset):
def __init__(self, root, joint_transform=None, transform=None, target_transform=None):
self.root = root
self.imgs = make_dataset(root)
self.joint_transform = joint_transform
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
img_path, gt_path = self.imgs[index]
img = Image.open(img_path).convert('RGB')
target = Image.open(gt_path).convert('L')
if self.joint_transform is not None:
img, target = self.joint_transform(img, target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imgs)
class ImageFolder_multi_scale(data.Dataset):
def __init__(self, root, joint_transform=None, transform=None, target_transform=None):
self.root = root
self.imgs = make_dataset(root)
self.joint_transform = joint_transform
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
img_path, gt_path = self.imgs[index]
img = Image.open(img_path).convert('RGB')
target = Image.open(gt_path).convert('L')
if self.joint_transform is not None:
img, target = self.joint_transform(img, target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imgs)
####可用可不用. GateNet论文中没有使用multi-scale to train
def collate(self,batch):
# size = [224, 256, 288, 320, 352][np.random.randint(0, 5)]
# size_list = [224, 256, 288, 320, 352]
# size_list = [128, 160, 192, 224, 256]
size_list = [128, 192, 256, 320, 384]
size = random.choice(size_list)
img, target = [list(item) for item in zip(*batch)]
img = torch.stack(img, dim=0)
img = interpolate(img, size=(size, size), mode="bilinear", align_corners=False)
target = torch.stack(target, dim=0)
target = interpolate(target, size=(size, size), mode="bilinear")
# print(img.shape)
return img, target