-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathgenerate_sal.py
85 lines (74 loc) · 2.94 KB
/
generate_sal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import os
import torch
from PIL import Image
from torch.autograd import Variable
from torchvision import transforms
from config import test_data
from misc import check_mkdir, crf_refine
from model_GateNet_ResNet import GateNet
import torch.nn.functional as F
#import ttach as tta
torch.manual_seed(2018)
torch.cuda.set_device(0)
import time
ckpt_path = ''
exp_name = ''
args = {
'snapshot': '',
'crf_refine': False,
'save_results': True
}
img_transform = transforms.Compose([
# transforms.ColorJitter(0.1, 0.1, 0.1),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
target_transform = transforms.ToTensor()
to_pil = transforms.ToPILImage()
to_test = {'test':test_data}
Image.MAX_IMAGE_PIXELS = 1000000000
def main():
#########################Load##########################
net = GateNet().cuda()
# net = GateNet_SIM_Light().cuda() # vgg16
print ('load snapshot \'%s\' for testing' % args['snapshot'])
net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot']),map_location={'cuda:1': 'cuda:1'}))
net.eval()
# transforms = tta.Compose(
# [
# tta.HorizontalFlip(),
# tta.Scale(scales=[1,1.5],interpolation='bilinear',align_corners=False),
# ]
# )
#
# net = tta.SegmentationTTAWrapper(net, transforms, merge_mode='mean')
########################################################
with torch.no_grad():
for name, root in to_test.items():
check_mkdir(os.path.join(ckpt_path, exp_name, '(%s) %s_%s' % (exp_name, name, args['snapshot'])))
root1 = os.path.join(root,'GT')
img_list = [os.path.splitext(f)[0] for f in os.listdir(root1) if f.endswith('.png')]
print(img_list)
for idx, img_name in enumerate(img_list):
print ('predicting for %s: %d / %d' % (name, idx + 1, len(img_list)))
img1 = Image.open(os.path.join(root,'Imgs/'+img_name +'.jpg')).convert('RGB')
img = img1
w,h = img1.size
img1 = img1.resize([384,384],Image.BILINEAR)
img_var = Variable(img_transform(img1).unsqueeze(0), volatile=True).cuda()
prediction = net(img_var)
# prediction = F.sigmoid(prediction)
prediction = to_pil(prediction.data.squeeze(0).cpu())
# prediction = prediction.resize((w, h), Image.BILINEAR)
prediction = prediction.resize((w, h), Image.NEAREST)
if args['crf_refine']:
prediction = crf_refine(np.array(img), np.array(prediction))
prediction = np.array(prediction)
if args['save_results']:
Image.fromarray(prediction).save(os.path.join(ckpt_path, exp_name, 'DUTS', img_name + '.png'))
if __name__ == '__main__':
start = time.time()
main()
end = time.time()
print(end-start)