-
Notifications
You must be signed in to change notification settings - Fork 15
/
misc.py
125 lines (88 loc) · 3.22 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import os
import pydensecrf.densecrf as dcrf
class AvgMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def check_mkdir(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
def cal_precision_recall_mae(prediction, gt):
assert prediction.dtype == np.uint8
assert gt.dtype == np.uint8
print(prediction.shape,gt.shape)
assert prediction.shape == gt.shape
eps = 1e-4
gt = gt / 255
prediction = (prediction-prediction.min())/(prediction.max()-prediction.min()+ eps)
gt[gt>0.5] = 1
gt[gt!=1] = 0
mae = np.mean(np.abs(prediction - gt))
hard_gt = np.zeros(prediction.shape)
hard_gt[gt > 0.5] = 1
t = np.sum(hard_gt)
precision, recall,iou= [], [],[]
binary = np.zeros(gt.shape)
th = 2 * prediction.mean()
if th > 1:
th = 1
binary[prediction >= th] = 1
sb = (binary * gt).sum()
pre_th = (sb+eps) / (binary.sum() + eps)
rec_th = (sb+eps) / (gt.sum() + eps)
thfm = 1.3 * pre_th * rec_th / (0.3*pre_th + rec_th + eps)
for threshold in range(256):
threshold = threshold / 255.
hard_prediction = np.zeros(prediction.shape)
hard_prediction[prediction > threshold] = 1
tp = np.sum(hard_prediction * hard_gt)
p = np.sum(hard_prediction)
iou.append((tp + eps) / (p+t-tp + eps))
precision.append((tp + eps) / (p + eps))
recall.append((tp + eps) / (t + eps))
return precision, recall, iou,mae,thfm
def cal_fmeasure(precision, recall,iou): #iou
beta_square = 0.3
max_fmeasure = max([(1 + beta_square) * p * r / (beta_square * p + r) for p, r in zip(precision, recall)])
loc = [(1 + beta_square) * p * r / (beta_square * p + r) for p, r in zip(precision, recall)]
a = loc.index(max(loc))
max_iou = max(iou)
return max_fmeasure,max_iou
def crf_refine(img, annos):
def _sigmoid(x):
return 1 / (1 + np.exp(-x))
assert img.dtype == np.uint8
assert annos.dtype == np.uint8
print(img.shape[:2],annos.shape)
assert img.shape[:2] == annos.shape
# img and annos should be np array with data type uint8
EPSILON = 1e-8
M = 2 # salient or not
tau = 1.05
# Setup the CRF model
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M)
anno_norm = annos / 255.
n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm))
p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm))
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32') # 创建和输入图片同样大小的U
U[0, :] = n_energy.flatten()
U[1, :] = p_energy.flatten()
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5)
# Do the inference
infer = np.array(d.inference(1)).astype('float32')
res = infer[1, :]
res = res * 255
res = res.reshape(img.shape[:2]) # 和输入图片同样大小
return res.astype('uint8')