forked from prastunlp/DualDec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathothertrain.py
163 lines (137 loc) · 7.8 KB
/
othertrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Train a model for Partial Match
"""
import os
from datetime import datetime
import time
import numpy as np
import random
import argparse
from shutil import copyfile
import torch
from transformers import BertTokenizer
import json
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='dataset/WebNLG-P/data') # {opt:[ WebNLG-P , NYT-P] }
parser.add_argument('--tokens_emb_dim', type=int, default=768, help='bert tokens embedding dimension.')
parser.add_argument('--word_emb_dim', type=int, default=300, help='Word embedding dimension.')
parser.add_argument('--position_emb_dim', type=int, default=20, help='Position embedding dimension.')
parser.add_argument('--dropout', type=float, default=0.4, help='Input and RNN dropout rate.')
parser.add_argument('--topn', type=int, default=1e10, help='Only finetune top N embeddings.')
parser.add_argument('--lr', type=float, default=2e-5)
parser.add_argument('--lr_decay', type=float, default=0)
parser.add_argument('--weight_decay', type=float, default=0, help='Applies to SGD and Adagrad.')
parser.add_argument('--optim', type=str, default='adam', help='sgd, adam or adamax.')
parser.add_argument('--num_epoch', type=int, default=100) # {nyt 60}
parser.add_argument('--load_saved', type=str, default='')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--max_grad_norm', type=float, default=5.0, help='Gradient clipping.')
parser.add_argument('--log_step', type=int, default=400, help='Print log every k steps.')
parser.add_argument('--log', type=str, default='logs.txt', help='Write training log to file.')
parser.add_argument('--save_epoch', type=int, default=20, help='Save model checkpoints every k epochs.')
parser.add_argument('--save_dir', type=str, default='./saved_models', help='Root dir for saving models.')
parser.add_argument('--id', type=str, default='WebNLG-P-01', help='Model ID under which to save models.')
parser.add_argument('--info', type=str, default='', help='Optional info for the experiment.')
parser.add_argument('--seed', type=int, default=35)
parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available())
parser.add_argument('--cpu', action='store_true', help='Ignore CUDA.')
## class num WebNLG-P {214 2 171} NYT-P {37 2 24}
parser.add_argument('--classemb_num', type=int, default=214, help='classname embedding num.')
parser.add_argument('--entityclass_num', type=int, default=2, help='classname embedding num.')
parser.add_argument('--relationclass_num', type=int, default=171, help='classname embedding num.')
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
from utils.loader import DataLoader
from models.remodel import REModel
from utils import helper, score, classinfo
opt = vars(args)
# load data
train_data = [json.loads(l) for l in tqdm(open(opt['data_dir'] + '/train.json'))]
dev_data = [json.loads(l) for l in tqdm(open(opt['data_dir'] + '/dev.json'))]
_, _, id2subj_type, subj_type2id, id2obj_type, obj_type2id = json.load(open(opt['data_dir'] + '/schemas.json', errors='ignore'))
id2predicate, predicate2id = json.load(open(opt['data_dir'] + '/rel2id.json')) # relations file
id2predicate = {int(i): j for i, j in id2predicate.items()}
# class info
# entityclass_path = opt['data_dir'] + '/entityclass_name.txt'
# relationclass_path = opt['data_dir'] + '/relationclass_name.txt'
# classembedding_path = opt['data_dir'] + '/classname_embedding.txt'
#
# opt['entityclass_name'] = classinfo.getclassname(entityclass_path)
# opt['relationclass_name'] = classinfo.getclassname(relationclass_path)
# class_emb_matrix, classname2id = classinfo.get_class_embedding(classembedding_path, opt['classemb_num'],
# opt['word_emb_dim'])
# W_entityclass_emb = classinfo.load_class_embedding(classname2id, class_emb_matrix, opt['entityclass_name'])
# W_relationclass_emb = classinfo.load_class_embedding(classname2id, class_emb_matrix, opt['relationclass_name'])
opt['num_class'] = len(id2predicate)
opt['num_subj_type'] = opt['entityclass_num']-1 #len(id2subj_type)
opt['num_obj_type'] = opt['entityclass_num']-1 # len(id2obj_type)
model_name = 'bert-base-cased'
tokenizer = BertTokenizer.from_pretrained(model_name)
# load data
print("Loading data from {} with batch size {}...".format(opt['data_dir'], opt['batch_size']))
train_batch = DataLoader(tokenizer, train_data, predicate2id, subj_type2id, obj_type2id, opt['batch_size'], False, 1)
model_id = opt['id'] if len(opt['id']) > 1 else '0' + opt['id']
model_save_dir = opt['save_dir'] + '/' + model_id
opt['model_save_dir'] = model_save_dir
helper.ensure_dir(model_save_dir, verbose=True)
helper.save_config(opt, model_save_dir + '/config.json', verbose=True)
file_logger = helper.FileLogger(model_save_dir + '/' + opt['log'], header="# epoch\ttrain_loss\dev_p\tdev_r\tdev_f1")
helper.print_config(opt)
print(opt['num_class'])
# model
model = REModel(opt, W_entityclass_emb=None, W_relationclass_emb=None) #None or W_relationclass_emb
if opt['load_saved'] != '':
model.load(opt['save_dir'] + '/' + opt['load_saved'] + '/best_model.pt')
dev_f1_history = []
current_lr = opt['lr']
global_step = 0
global_start_time = time.time()
format_str = '{}: step {}/{} (epoch {}/{}), loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'
max_steps = len(train_batch) * opt['num_epoch']
# start training
for epoch in range(1, opt['num_epoch'] + 1):
train_loss = 0
for i, batch in enumerate(train_batch):
start_time = time.time()
global_step += 1
loss = model.update(batch)
train_loss += loss
if global_step % opt['log_step'] == 0:
duration = time.time() - start_time
print(format_str.format(datetime.now(), global_step, max_steps, epoch, \
opt['num_epoch'], loss, duration, current_lr))
# eval on dev
print("Evaluating on dev set...")
dev_f1, dev_p, dev_r, results = score.other_evaluate(tokenizer, dev_data, id2predicate, model)
train_loss = train_loss / train_batch.num_examples * opt['batch_size']
best_f1 = dev_f1 if epoch == 1 or dev_f1 > max(dev_f1_history) else max(dev_f1_history)
print(
"epoch {}: train_loss = {:.6f}, dev_p = {:.6f}, dev_r = {:.6f}, dev_f1 = {:.4f}, best_f1 = {:.4f}".format(epoch, \
train_loss,
dev_p,
dev_r,
dev_f1,
best_f1))
file_logger.log("{}\t{:.6f}\t{:.6f}\t{:.4f}\t{:.4f}".format(epoch, train_loss, dev_p, dev_r, dev_f1))
# save model
model_file = model_save_dir + '/checkpoint_epoch_{}.pt'.format(epoch)
model.save(model_file, epoch)
if epoch == 1 or dev_f1 >= max(dev_f1_history):
copyfile(model_file, model_save_dir + '/best_model.pt')
print("new best model saved.")
with open(model_save_dir + '/best_dev_results.json', 'w') as fw:
json.dump(results, fw, indent=4, ensure_ascii=False)
print("new best results saved.")
if epoch % opt['save_epoch'] != 0:
os.remove(model_file)
if len(dev_f1_history) > 10 and dev_f1 <= dev_f1_history[-1] and \
opt['optim'] in ['sgd', 'adagrad']:
current_lr *= opt['lr_decay']
model.update_lr(current_lr)
dev_f1_history += [dev_f1]
print("")
print("Training ended with {} epochs.".format(epoch))