-
Notifications
You must be signed in to change notification settings - Fork 1
/
myTraining.py
37 lines (25 loc) · 1.01 KB
/
myTraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
import numpy as np
import pickle
from sklearn.linear_model import LogisticRegression
def data_split(data, ratio):
np.random.seed(42)
shuffled = np.random.permutation(len(data))
test_set_size = int(len(data) * ratio)
test_indices = shuffled[:test_set_size]
train_indices = shuffled[test_set_size:]
return data.iloc[train_indices], data.iloc[test_indices]
if __name__ == "__main__":
df = pd.read_csv('data.csv')
train, test = data_split(df, 0.21)
X_train = train[['fever', 'bodyPain', 'age', 'runnyNose', 'diffBreath']].to_numpy()
X_test = test[['fever', 'bodyPain', 'age', 'runnyNose', 'diffBreath']].to_numpy()
Y_train = train[['infectionProb']].to_numpy().reshape(1880,)
Y_test = test[['infectionProb']].to_numpy().reshape(499)
clf = LogisticRegression()
clf.fit(X_train, Y_train)
# open a file, where you ant to store the data
file = open('model.pkl', 'wb')
# dump information to that file
pickle.dump(clf, file)
file.close()