-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
17f35fa
commit 7ac9221
Showing
1 changed file
with
66 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import Mathlib.Algebra.Ring.Pi | ||
import Mathlib.Data.Fintype.Pi | ||
import Mathlib.Data.Matrix.Rank | ||
|
||
open scoped BigOperators | ||
|
||
variable {ι R : Type*} [DecidableEq ι] {α : ι → Type*} [Semiring R] {m n : ℕ} | ||
{f f₁ f₂ : (∀ i, α i) → R} | ||
|
||
/-- A function `f` *has slice-rank at most* `n` if it can be written as the sum of `n` functions | ||
of the form `x ↦ g (x i) * h (x 1, ..., x (i - 1), x (i + 1), ..., x k)`. -/ | ||
@[mk_iff hasSliceRankLE_iff] | ||
inductive HasSliceRankLE : ℕ → ((∀ i, α i) → R) → Prop | ||
| zero : HasSliceRankLE 0 0 | ||
| succ ⦃n f i⦄ (g : α i → R) (h : (∀ j ≠ i, α j) → R) : | ||
HasSliceRankLE n f → HasSliceRankLE (n + 1) (f + (fun x ↦ g (x i) * h (fun j _ ↦ x j))) | ||
|
||
@[simp] lemma hasSliceRankLE_zero : HasSliceRankLE 0 f ↔ f = 0 := by | ||
rw [hasSliceRankLE_iff]; simp [@eq_comm _ 0] | ||
|
||
lemma hasSliceRankLE_succ : | ||
HasSliceRankLE (n + 1) f ↔ ∃ f' i, ∃ (g : α i → R) (h : (∀ j ≠ i, α j) → R), | ||
HasSliceRankLE n f' ∧ f = f' + fun x ↦ g (x i) * h fun j _ ↦ x j := by | ||
rw [hasSliceRankLE_iff]; aesop | ||
|
||
lemma hasSliceRankLE_one : | ||
HasSliceRankLE 1 f ↔ ∃ i, ∃ (g : α i → R) (h : (∀ j ≠ i, α j) → R), | ||
f = fun x ↦ g (x i) * h fun j _ ↦ x j := by simp [hasSliceRankLE_succ] | ||
|
||
lemma hasSliceRankLE_iff_exists_sum : | ||
HasSliceRankLE n f ↔ ∃ (i : Fin n → ι) (g : ∀ k, α (i k) → R) (h : ∀ k, (∀ j ≠ i k, α j) → R), | ||
f = ∑ k, fun x ↦ g k (x (i k)) * h k fun j _ ↦ x j := by | ||
induction' n with n ih generalizing f | ||
· simp | ||
simp_rw [hasSliceRankLE_succ, ih] | ||
constructor | ||
· rintro ⟨f', iₙ, gₙ, hₙ, ⟨i, g, h, rfl⟩, rfl⟩ | ||
refine ⟨Fin.cons iₙ i, Fin.cons gₙ g, Fin.cons hₙ h, ?_⟩ | ||
ext x | ||
simp only [ne_eq, Pi.add_apply, Finset.sum_apply, add_comm (_ * _), Fin.sum_univ_succ, | ||
Fin.cons_zero, Fin.cons_succ] | ||
congr | ||
· rintro ⟨i, g, h, rfl⟩ | ||
refine ⟨_, i 0, g 0, h 0, ⟨Fin.tail i, Fin.tail g, Fin.tail h, rfl⟩, ?_⟩ | ||
ext x | ||
simp only [ne_eq, Pi.add_apply, Finset.sum_apply, add_comm (_ * _), Fin.sum_univ_succ, | ||
Fin.cons_zero, Fin.cons_succ] | ||
congr | ||
|
||
lemma HasSliceRankLE.add (h₁ : HasSliceRankLE m f₁) : | ||
∀ {n f₂}, HasSliceRankLE n f₂ → HasSliceRankLE (m + n) (f₁ + f₂) | ||
| _, _, .zero => by simpa | ||
| _, _, .succ g h h₂ => by simpa [add_assoc] using (h₁.add h₂).succ g h | ||
|
||
/-- Any function has slice-rank bounded by the cardinality of its domain. -/ | ||
lemma hasSliceRankLE_card [Fintype ι] [∀ i, Fintype (α i)] (f : (∀ i, α i) → R) : | ||
HasSliceRankLE (Fintype.card (∀ i, α i)) f := by | ||
rw [hasSliceRankLE_iff_exists_sum] | ||
sorry | ||
|
||
/-- Any function from a finite type has finite slice-rank. -/ | ||
lemma exists_hasSliceRankLE [Finite ι] [∀ i, Finite (α i)] (f : (∀ i, α i) → R) : | ||
∃ n, HasSliceRankLE n f := by | ||
cases nonempty_fintype ι | ||
have (i) := Fintype.ofFinite (α i) | ||
exact ⟨_, hasSliceRankLE_card _⟩ |