-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathROC1.R
74 lines (62 loc) · 1.69 KB
/
ROC1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# define density function
xMin <- 0.0
xMax <- 5.0
yMin <- 0.0
yMax <- 1.5
datX <- seq( from=xMin, to=xMax, by=0.01 )
dfDNorm1 <- data.frame( x=datX, y=dnorm( x=datX, mean=2.0, sd=0.3 ) )
dfDNorm2 <- data.frame( x=datX, y=dnorm( x=datX, mean=3.0, sd=0.8 ) )
# set graphics parameters
#par( xaxt="n" )
#par( yaxt="n" )
title <- "陽性と陰性のクラス確率分布"
xlab <- "x"
ylab <- "尤度[likelihood]"
xlim <- range( c(xMin,xMax) )
ylim <- range( c(yMin,yMax) )
col1 <- "red"
col2 <- "blue"
# plot density functions
plot( dfDNorm1,
main = title,
xlab = xlab, ylab = ylab,
xlim = xlim, ylim = ylim,
col = col1,
type = "l"
)
par(new=T)
plot( dfDNorm2,
main = title,
xlab = xlab, ylab = ylab,
xlim = xlim, ylim = ylim,
col = col2,
type = "l"
)
#############################
# ROC Curve #
#############################
# define density function
xMin <- 0.0
xMax <- 1.0
yMin <- 0.0
yMax <- 1.0
dat1 <- seq( from=0.0, to=10.0, by=0.01 )
dat2 <- seq( from=0.0, to=10.0, by=0.01 )
dfROC <- data.frame(
sigma1 = pnorm( q=dat1, mean=2.0, sd=0.3, lower.tail=TRUE ),
sigma2 = pnorm( q=dat2, mean=3.0, sd=0.8, lower.tail=TRUE )
)
# set graphics parameters
win.graph() # 2枚目のグラフィックウインドウに作図
titleROC <- "ROC曲線 [ROC Curve]"
xlab <- "偽陽性率 [false positive rate]"
ylab <- "真陽性率 [true positive rate]"
xlim <- range( c(xMin,xMax) )
ylim <- range( c(yMin,yMax) )
# plot ROC Curve
plot( dfROC$sigma2, dfROC$sigma1,
main = titleROC,
xlab = xlab, ylab = ylab,
xlim = xlim, ylim = ylim,
type = "l"
)