-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrnn_train.py
207 lines (179 loc) · 8.7 KB
/
crnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import tensorflow as tf
import numpy as np
from tensorflow.contrib import learn
import time
import os
import datetime
import pickle
from data_helper.helper import load_sub_dialogues, batch_iter, tokenizer
from cnn_rnn.cnn_rnn import CRNN
tf.reset_default_graph()
# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 300, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "1,2,3,4", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
#tf.flags.DEFINE_float("l2_reg_lambda", 0.2, "L2 regularization lambda (default: 0.0)")
tf.flags.DEFINE_integer("num_sequences", 5, "the size of a sequence of utterances extracted from a dialogue")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 30, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 7, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 200, "Number of checkpoints to store (default: 5)")
tf.flags.DEFINE_integer("rnn_size", 512, "Number of units in LSTM")
#tf.flags.DEFINE_boolean("is_training", True, "the dataset is used for training")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
with open('vocabs.pickle', 'rb') as f:
vocabs = pickle.load(f)
#load in train and dev data
train_x, train_y = load_sub_dialogues('./data/new_train.json')
dev_x, dev_y = load_sub_dialogues('./data/new_dev.json')
x_text = train_x + dev_x
y = train_y + dev_y
y = np.copy(np.array(y))
#transform y
labels = np.unique(y)
y = np.array([list(map(int, labels == y_)) for y_ in y])
# Build vocabulary
max_document_length = max([len(x.split()) for dialogue in x_text for x in dialogue])
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length, tokenizer_fn = tokenizer)
#vocab_processor.fit([text for x in x_text for text in x])
vocab_processor.fit(vocabs)
x = np.array([list(vocab_processor.transform(text)) for text in x_text])
#dev_sample_index = -1 * int(0.1 * float(len(y)))
dev_sample_index = -len(dev_x)
x_train, x_dev = x[:dev_sample_index], x[dev_sample_index:]
y_train, y_dev = y[:dev_sample_index], y[dev_sample_index:]
#test data
test_x, test_y = load_sub_dialogues('./data/new_test.json')
x_test = np.array([list(vocab_processor.transform(text)) for text in test_x])
y_test = np.array([list(map(int, labels == y_)) for y_ in test_y])
del x, y, train_x,train_y, dev_x, dev_y, test_x, test_y
print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
print("Test size: {:d}".format(len(y_test)))
tf.reset_default_graph()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
#writer = tf.summary.FileWriter('graphs/cnn-rnn-train', sess.graph)
crnn = CRNN(
num_seq=FLAGS.num_sequences, \
sequence_length=x_train.shape[2], \
num_classes = y_train.shape[1], \
vocab_size = len(vocab_processor.vocabulary_), \
embedding_size = FLAGS.embedding_dim, \
filter_sizes = list(map(int, FLAGS.filter_sizes.split(","))), \
num_filters = FLAGS.num_filters,\
rnn_size = FLAGS.rnn_size,\
is_train=False)
'''
crnn_dev = CRNN(
num_seq=FLAGS.num_sequences, \
sequence_length = x_train.shape[2], \
num_classes = y_train.shape[1], \
vocab_size = len(vocab_processor.vocabulary_), \
embedding_size = FLAGS.embedding_dim, \
filter_sizes = list(map(int, FLAGS.filter_sizes.split(","))), \
num_filters = FLAGS.num_filters, \
rnn_size = FLAGS.rnn_size, \
is_train=False)
'''
with tf.name_scope("train"):
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
grads_and_vars = optimizer.compute_gradients(crnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
#Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "graphs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", crnn.loss)
acc_summary = tf.summary.scalar("accuracy", crnn.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
#Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
sess.run(tf.global_variables_initializer())
initW = np.random.normal(0,1, (len(vocab_processor.vocabulary_), FLAGS.embedding_dim))
for word in vocabs:
idx = vocab_processor.vocabulary_.get(word)
initW[idx] = vocabs[word]
sess.run(crnn.Vocab_Matrix.assign(initW))
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {crnn.input_x:x_batch,
crnn.input_y: y_batch,
crnn.dropout_keep_prob: FLAGS.dropout_keep_prob}
_, step, summaries, loss, accuracy = sess.run([train_op, global_step, train_summary_op, crnn.loss, crnn.accuracy], feed_dict)
time_str = datetime.datetime.now().isoformat()
if step % 10 == 0:
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluate model on a dev set
"""
feed_dict = {
crnn.input_x: x_batch,
crnn.input_y: y_batch,
crnn.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy = sess.run([global_step, train_summary_op, crnn.loss, crnn.accuracy], feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
if writer:
writer.add_summary(summaries, step)
# Generate batches
batches = batch_iter(
list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print("\nEvaluation:")
dev_step(x_dev, y_dev, writer=dev_summary_writer)
print("")
# Testing
def test(x_batch, y_batch):
feed_dict = {
crnn.input_x: x_batch,
crnn.input_y: y_batch,
crnn.dropout_keep_prob: 1.0
}
predictions, loss, accuracy = sess.run(
[crnn.predictions,crnn.loss,crnn.accuracy],
feed_dict
)
return predictions, loss, accuracy
predictions, loss, accuracy = test(x_test, y_test)
print("\nTest Accuracy: {:g}; Loss: {:g}".format(accuracy, loss))
with open('./predictions/crnn_predictions.pickle', 'wb') as f:
pickle.dump(predictions, f)
# accuracy: 0.546718; loss: 1.33084