-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kruskal-algorithm.cpp
171 lines (130 loc) · 3.27 KB
/
kruskal-algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//Graph Kruskal algorithm
#include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int src, dest, weight;
};
class Graph {
public:
int V, E;
Edge* edge;
};
// Creates a graph with V vertices and E edges
Graph* createGraph(int V, int E)
{
Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
// A structure to represent a subset for union-find
class subset {
public:
int parent;
int rank;
};
int find(subset subsets[], int i)
{
// find root and make root as parent of i
// (path compression)
if (subsets[i].parent != i)
subsets[i].parent
= find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high
// rank tree (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and
// increment its rank by one
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
Edge* a1 = (Edge*)a;
Edge* b1 = (Edge*)b;
return a1->weight > b1->weight;
}
// The main function to construct MST using Kruskal's
// algorithm
void KruskalMST(Graph* graph)
{
int V = graph->V;
Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0;
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
myComp);
// Allocate memory for creating V ssubsets
subset* subsets = new subset[(V * sizeof(subset))];
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
while (e < V - 1 && i < graph->E)
{
Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
cout << "Following are the edges in the "
"MST\n";
int minimumCost = 0;
for (i = 0; i < e; ++i)
{
cout << result[i].src << " -- " << result[i].dest
<< " == " << result[i].weight << endl;
minimumCost = minimumCost + result[i].weight;
}
cout << "Minimum Cost Spanning Tree: " << minimumCost
<< endl;
}
// Helper function which takes in src, dest, weight, index, address of graph as an argument
// to update the value of graph for respective index
void updateGraph(int s, int d, int w, int idx, Graph** graph){
graph->edge[idx].src = s;
graph->edge[idx].dest = d;
graph->edge[idx].weight = w;
}
// Driver code
int main()
{
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph* graph = createGraph(V, E);
// add edge 0-1
updateGraph(0, 1, 10, 0, &graph);
// add edge 0-2
updateGraph(0, 2, 6, 1, &graph);
// add edge 0-3
updateGraph(0, 3, 5, 2, &graph);
// add edge 1-3
updateGraph(1, 3, 15, 3, &graph);
// add edge 2-3
updateGraph(2, 3, 4, 4, &graph);
KruskalMST(graph);
return 0;
}