-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
54 lines (46 loc) · 2.15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import cv2
import numpy as np
import pandas as pd
import torch
def unpatch(tensor: torch.Tensor, h: int, w: int, channels: int, patch_size: int) -> torch.Tensor:
# the next line of code was thoroughly thought and tested, never to be touched again
return tensor.permute(0, 2, 3, 1).reshape(
-1, h, w, channels, patch_size, patch_size
).permute(
0, 3, 1, 4, 2, 5
).reshape(
-1, channels, patch_size * h, patch_size * w
)
def pad_to_square(img: np.ndarray, fill_value=-1, size=None) -> np.ndarray:
"""Pads an image to make it square."""
if size is not None and max(img.shape) <= size:
pic_size = size
else:
pic_size = max(img.shape)
pad_h = (pic_size - img.shape[0]) // 2
pad_w = (pic_size - img.shape[1]) // 2
padded_img = np.full(
(pic_size, pic_size, *img.shape[2:]), fill_value=fill_value, dtype=img.dtype
)
padded_img[pad_h:pad_h + img.shape[0], pad_w:pad_w + img.shape[1]] = img
return padded_img
def draw_radiation_pattern(radiation_pattern_csv_path, input_img, azimuth):
df = pd.read_csv(radiation_pattern_csv_path, header=None)
height, width = input_img.shape[:2]
min_intensity_y = np.argmin(input_img[..., 2]) // input_img[..., 2].shape[1]
min_intensity_x = np.argmin(input_img[..., 2]) % input_img[..., 2].shape[1]
antenna_location = [min_intensity_x, min_intensity_y] # Convert to list for uniformity
values = df[0]
rp_img = np.zeros((height, width), dtype=float)
length = (input_img.shape[0] ** 2 + input_img.shape[1] ** 2) ** 0.5
for i in range(360):
angle_1_rad = np.radians(i - 0.5 + azimuth)
angle_2_rad = np.radians(i + 0.5 + azimuth)
x1 = int(antenna_location[0] + length * np.cos(angle_1_rad))
y1 = int(antenna_location[1] - length * np.sin(angle_1_rad))
x2 = int(antenna_location[0] + length * np.cos(angle_2_rad))
y2 = int(antenna_location[1] - length * np.sin(angle_2_rad))
triangle_cnt = np.array([antenna_location, [x1, y1], [x2, y2]], dtype=np.int32)
color = float(values.iloc[i])
cv2.drawContours(rp_img, [triangle_cnt], 0, color, -1)
return rp_img