The technical support is available with conda.
- Install Miniconda.
- Create a module PyTorch environment
mphy0041-pt
.
conda create --name mphy0041-pt -c pytorch numpy matplotlib requests pytorch
Notebook can be installed within the mphy0041
conda environment:
conda activate mphy0041 \
&& conda install -c conda-forge notebook
Alternatively, create a standalone conda environment instead to manage a lighter environment without the deep learning packages.
Note: the following instructions for installation depend on the available CUDA versions.
For TensorFlow users, see conda TensorFlow guide, e.g.:
conda install tensorflow-gpu -c anaconda
For PyTorch users, see PyTorch install guide, e.g.:
conda install pytorch cudatoolkit=10.2 -c pytorch
Ubuntu 20.04 Docker images are available. Alternatively, a Dockerfile is also provided. See more details and support in the official Docker documentation.
Download the pre-built Docker image:
sudo docker pull yipenghu/ucl-module-ubuntu:minimal
Create and run a container named mphy0041
in its interactive bash:
sudo docker run --name mphy0041 -ti yipenghu/ucl-module-ubuntu:minimal bash
Within the container, follow the above to clone this repositry and create the conda environment.
TBC