-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmu_zama.py
186 lines (142 loc) · 8.88 KB
/
mu_zama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import logging
import pickle
import datetime
import time
import torch
import torch.nn.functional as F
from tqdm import tqdm
from plain_models import MLP_Credit, MLP_Bank, CryptoNet_Digits, CryptoNet_MNIST
from concrete.ml.torch.compile import compile_torch_model
from torchattacks.attack import Attack
from random import sample
from tools import load_data, load_torch_data
from base_zama import *
from base_margin import *
log_filename = datetime.datetime.now().strftime("./log/zama_mu.log")
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M:%S',
filename=log_filename, filemode='a', level=logging.DEBUG)
logger = logging.getLogger(__name__)
def OriDifferentialTesting(seed_loader, plain_model, enc_model, use_sim=False):
seedList = [(data, label) for data, label in seed_loader]
trueDiffList = []
falseDiffList = []
sameList = []
start_time = time.time()
pbar = tqdm(seedList)
for data, label in pbar:
_, label_p = PredictPlainVector(plain_model, data)
_, label_e = PredictEncVector(enc_model, data, use_sim=use_sim)
if label_p != label_e:
if label_p == label:
trueDiffList.append((data, label))
else:
falseDiffList.append((data, label))
else:
sameList.append((data, label))
pbar.set_postfix({'FNum': len(falseDiffList), 'FRatio': len(falseDiffList) * 100.0 / len(seedList),
'TNum': len(trueDiffList), 'TRatio': len(trueDiffList) * 100.0 / len(seedList)})
print(f'FNum: {len(falseDiffList)}/{len(seedList)}({len(falseDiffList) * 100.0 / len(seedList):.2f}%)', end=" | ")
print(f'TNum: {len(trueDiffList)}/{len(seedList)}({len(trueDiffList) * 100.0 / len(seedList):.2f}%)')
end_time = time.time()
logger.info("Origin DT running time: %.2fs" % (end_time - start_time))
logger.info(f"FNum: {len(falseDiffList)}/{len(seedList)}({len(falseDiffList) * 100.0 / len(seedList):.2f}%)")
logger.info(f"TNum: {len(trueDiffList)}/{len(seedList)}({len(trueDiffList) * 100.0 / len(seedList):.2f}%)")
return falseDiffList, trueDiffList, sameList
def MarginBasedDifferentialTesting(mutation_method, mutation_num, seed_loader, plain_model, enc_model, use_sim=False, noise_bar = 0.05, iter_bar = 0.02):
seedList = [(data, 0, label, 0) for data, label in seed_loader]
trueDiffList = []
mutationList = []
patternDict = []
attacks = MGPGD_mu(mutation_method, plain_model, eps=iter_bar, alpha=iter_bar / 4, steps=10)
start_time = time.time()
total_mutation = 0
pbar = tqdm(total=mutation_num)
while total_mutation < mutation_num and len(seedList) > 0:
data, old_noise, label, mu_num = seedList.pop(0)
mu_num += 1
noise = attacks.forward(data + old_noise, label)
noise = old_noise + noise
noise = torch.clamp(noise, min=-noise_bar, max=noise_bar)
noise_data = torch.clamp(data + noise, min=0, max=1)
_, label_p = PredictPlainVector(plain_model, noise_data)
_, label_e = PredictEncVector(enc_model, noise_data, use_sim=use_sim)
noise = noise_data - data
if label_p != label_e and label_p == label:
trueDiffList.append((data.clone(), noise.clone(), label.clone(), mu_num))
mutationList.append(total_mutation)
patternDict.append((data, noise, label_p, label_e))
else:
seedList.append((data, noise, label, mu_num))
total_mutation += 1
pbar.update(1)
pbar.set_postfix({'TAEs': len(trueDiffList), 'Mutation': total_mutation})
print({'TAEs': len(trueDiffList), 'Mutation': total_mutation})
end_time = time.time()
logger.info(f"Mutation DT running time[{end_time - start_time:.2f}s], Noise Bar[{noise_bar}], Iter Bar[{iter_bar}]")
logger.info(f"Total Mutation[{total_mutation}], Normal[{len(seedList)}], Deviation[{len(trueDiffList)}]")
return trueDiffList, seedList, patternDict, mutationList
def Start(data_name, seed_filter, mutation_method, seed_num=800, mutation_num=4000, noise_bar = 0.05, iter_bar = 0.02, use_sim=False):
data_name = data_name.lower()
if data_name == "credit":
train_loader, test_loader, x_train = load_data(data_name, batch_size=1, example=True)
plain_model = MLP_Credit()
elif data_name == "bank":
train_loader, test_loader, x_train = load_data(data_name, batch_size=1, example=True)
plain_model = MLP_Bank()
elif data_name == "digits":
train_loader, test_loader, x_train = load_data(data_name, batch_size=1, example=True)
plain_model = CryptoNet_Digits()
elif data_name == "mnist":
train_loader, test_loader, x_train = load_torch_data(data_name, batch_size=1, example=True)
plain_model = CryptoNet_MNIST()
else:
raise NotImplementedError(data_name)
plain_model.load_state_dict(torch.load(f'./pretrained/{data_name}_plain.pt'))
print("begin compile ...")
n_bits, p_error = 6, 0.01
start_compile = time.time()
enc_model = compile_torch_model(plain_model, x_train, n_bits=n_bits, rounding_threshold_bits=min(n_bits + 2, 16),
p_error=p_error)
end_compile = time.time()
print(f"compile time: {end_compile - start_compile:.2f}s")
logger.info("="*100)
logger.info(f"Concrete-ML {'Simulation' if use_sim else 'RealFHE'} Mutation Start")
logger.info(f"Dataset: {data_name}, #Mutation: {mutation_num}, Seed Length: {seed_num}")
# step 1: seed filter
logger.info(f"Step 1: {seed_filter} Seed Filtering")
if seed_filter == "margin":
seed_loader = mertric_sort(seed_num, plain_model, train_loader)
elif seed_filter == "random":
seed_loader = [(data, label) for data, label in train_loader]
seed_loader = sample(seed_loader, seed_num)
_, oriTrueDiffList, sameList = OriDifferentialTesting(seed_loader, plain_model, enc_model, use_sim=use_sim)
# severial mutation
logger.info(f"Step 2: {mutation_method} Mutation")
MarginBasedDifferentialTesting(mutation_method, mutation_num, sameList, plain_model, enc_model, use_sim=use_sim, noise_bar = noise_bar, iter_bar = iter_bar)
return
if __name__ == "__main__":
Start("credit", "random", "random", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("credit", "random", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("credit", "random", "margin", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("credit", "margin", "random", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("credit", "margin", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("credit", "margin", "margin", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("bank", "random", "random", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("bank", "random", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("bank", "random", "margin", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("bank", "margin", "random", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("bank", "margin", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("bank", "margin", "margin", seed_num=100, mutation_num=300, noise_bar = 0.01, iter_bar=0.003)
Start("digits", "random", "random", seed_num=100, mutation_num=300, noise_bar = 0.05, iter_bar = 0.03)
Start("digits", "random", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.05, iter_bar = 0.03)
Start("digits", "random", "margin", seed_num=100, mutation_num=300, noise_bar = 0.05, iter_bar = 0.03)
Start("digits", "margin", "random", seed_num=100, mutation_num=300, noise_bar = 0.05, iter_bar = 0.03)
Start("digits", "margin", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.05, iter_bar = 0.03)
Start("digits", "margin", "margin", seed_num=100, mutation_num=300, noise_bar = 0.05, iter_bar = 0.03)
Start("mnist", "random", "random", seed_num=100, mutation_num=300, noise_bar = 0.03, iter_bar = 0.01)
Start("mnist", "random", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.03, iter_bar = 0.01)
Start("mnist", "random", "margin", seed_num=100, mutation_num=300, noise_bar = 0.03, iter_bar = 0.01)
Start("mnist", "margin", "random", seed_num=100, mutation_num=300, noise_bar = 0.03, iter_bar = 0.01)
Start("mnist", "margin", "pgd", seed_num=100, mutation_num=300, noise_bar = 0.03, iter_bar = 0.01)
Start("mnist", "margin", "margin", seed_num=100, mutation_num=300, noise_bar = 0.03, iter_bar = 0.01)
print("mu_zama")