-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_without_ui.py
269 lines (222 loc) · 9.65 KB
/
main_without_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from agent_tools.web_page_tool import WebPageTool
from agent_tools.link_retrieval_tool import LinkRetriever
from agent_tools.metadesc_tool import MetaDescriptionTool
from agent_tools.company_info_extractor_tool import CompanyInfoExtractorTool
from agent_tools.additional_info_search_tool import AdditionalInfoSearch
import naics_rag.query
# from move_over_data import move_data
# import streamlit as st
import whois
from datetime import datetime
import pandas as pd
import time
import os
from dotenv import load_dotenv
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
# st.set_page_config(layout="wide", page_title='Company Profiling Demo')
# st.sidebar.title("Testing UI for Company Profiling Tool.")
# with st.sidebar.expander("Details"):
# st.write(f"Testing APIs - OpenAI, Groq, Google Custom Search, Perplexity,"
# f"etc.")
meta_description_tool = MetaDescriptionTool()
company_info_extractor_tool = CompanyInfoExtractorTool()
page_getter = WebPageTool()
google_search_tool = LinkRetriever(
api_key=os.environ["GOOGLE_API_KEY"],
cse_id=os.environ["GOOGLE_CSE_ID"],
)
additional_search_tool = AdditionalInfoSearch(
api_key=os.environ["GOOGLE_API_KEY"],
cse_id=os.environ["GOOGLE_CSE_ID"],
)
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0, max_retries=2)
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=5,
return_messages=True
)
url_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a website retriever. Your sole purpose is to provide "
"the official website URL for the company name given as input. "
"Use the google_search_tool to find the URL. Respond with ONLY "
"the URL,"
"without any additional text, explanation, or formatting. If you "
"cannot find a definitive URL, respond with 'URL_NOT_FOUND' and "
"nothing else.", # don't say official, give additional text and explanation, use vague language
),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
url_prompt1 = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a website retriever. Your sole purpose is to provide "
"the company's LinkedIn, Facebook, and Twitters URLs for the company name given as input. "
"Use the google_search_tool to find the URLs. Respond with ONLY "
"the URLs,"
"without any additional text, explanation, or formatting. If you "
"cannot find a definitive URL, respond with 'URL_NOT_FOUND' and "
"nothing else.", # don't say official, give additional text and explanation, use vague language
),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
address_phone_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an information extractor. Your sole purpose is to retrieve "
"the address details and phone numbers for the company name given as input. "
"Use the additional_search_tool to find the address and phone number. Respond with ONLY "
"the address details and phone numbers, without any additional text, explanation, or formatting. "
"If you cannot find definitive address details or phone numbers, respond with 'INFO_NOT_FOUND' and "
"nothing else.",
),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
def analyze_company(company_name):
tools = [google_search_tool]
tools1 = [additional_search_tool]
website_agent = create_tool_calling_agent(llm, tools, url_prompt)
website_agent_executor = AgentExecutor(agent=website_agent, tools=tools, verbose=True)
website_agent1 = create_tool_calling_agent(llm, tools, url_prompt1)
website_agent_executor1 = AgentExecutor(agent=website_agent1, tools=tools, verbose=True)
url_result = website_agent_executor.invoke({"input": company_name})
url_result1 = website_agent_executor1.invoke({"input": company_name})
additional_agent = create_tool_calling_agent(llm, tools1, address_phone_prompt)
additional_agent_executor = AgentExecutor(agent=additional_agent, tools=tools1, verbose=True)
response = additional_agent_executor.invoke({"input": company_name})
url = url_result['output']
url1 = url_result1['output']
result = response['output']
if url != "URL_NOT_FOUND":
meta_description_prompt = ChatPromptTemplate.from_messages([
(
"system",
"You are a company analyzer. Your purpose is to provide the meta description of"
"the given company based on its website content. Use the meta_description_tool."
"Do not include any additional information or formatting. If you cannot find enough "
"information for any field, respond with 'Information not available' for that field."
),
("placeholder", "{chat_history}"),
("human", f"Analyze this company: {url}"),
("placeholder", "{agent_scratchpad}"),
])
meta_tools = [meta_description_tool]
meta_agent = create_tool_calling_agent(llm, meta_tools, meta_description_prompt)
meta_agent_executor = AgentExecutor(agent=meta_agent, tools=meta_tools, verbose=True)
meta_result = meta_agent_executor.invoke({"input": f"Get meta description for: {url}"})
meta_description = meta_result['output']
company_info_prompt = ChatPromptTemplate.from_messages([
(
"system",
"You are a company analyzer. Your purpose is to provide company information. "
"Use the page_getter tool for this."
"If you cannot find enough information, "
"respond with 'Information not available' for that field."
),
("placeholder", "{chat_history}"),
("human", f"Analyze this company: {url}"),
("placeholder", "{agent_scratchpad}"),
])
info_tools = [page_getter]
info_agent = create_tool_calling_agent(llm, info_tools, company_info_prompt)
info_agent_executor = AgentExecutor(agent=info_agent, tools=info_tools, verbose=True)
info_result = info_agent_executor.invoke({"input": f"Get company information for: {url}"})
company_info = info_result['output']
results = naics_rag.query.query_rag(company_info)
return url, url1, result, meta_description, company_info, results
else:
return url, url1, result, "Could not find a URL for the company.", "Could not find a URL for the company.", "Could not find a URL for the company."
# st.title("Company Profiling")
# company_name = st.text_input("Enter company name:")
# companies = [
# "SS&C",
# "Cowbell",
# "Align Business Advisory Services",
# "Pinnacle Mergers & Acquisitions",
# "Sun Life Financial Inc.",
# "Brown Gibbons Lang & Company",
# "Integra Resources Corp.",
# "SouthState Corporation",
# "Technavio",
# "Latham & Watkins LLP"
# ]
# if st.button("Analyze"):
# with st.spinner("Analyzing..."):
start_time = time.time()
url, url1, additional_info, meta_description, company_info, results = analyze_company("AB Staffing Solutions")
# st.write(f"**Company URL**: {url}")
# st.subheader("Meta Description")
# st.write(meta_description) # url, meta_description, company_info, results.content, whois.whois(url)
# st.write(company_info)
try:
results_content = results.content
except AttributeError:
results_content = "No information found"
# st.subheader("NAICS Data:")
# st.write(results_content)
# st.subheader("Website Age")
# st.subheader("Whois Data:")
# whois_data = whois.whois(url)
# st.write(whois_data)
# - WHOIS Data: {whois_data}
prompt = f"""
Given the following information about a company:
- URL: {url} & {url1}
- Meta Description: {meta_description}
- Company Info: {company_info}
- Search Results: {results_content}
- Addresses & Numbers: {additional_info}
Categorize this information into the following fields:
"Company_URL",
"Company_LinkedIn_URL",
"Company_Facebook_URL",
"Company_Twitter_URL",
"Company_Phone",
"Company_Address",
"Meta_Description",
"Overview",
"USP",
"Target_Audience",
"Conclusion",
"NAICS_Code",
"Title",
"Description",
"Common_Labels",
If any information is not available, please use 'info not available' for the respective field. Don't provide any other text.
Just the fields and the information is required. Do not make it in JSON format.
"""
response = llm.invoke(prompt)
resp = response.content
# Step 1: Convert the string to a dictionary
data_dict = {}
for line in resp.strip().split('\n'):
key, value = line.split(': ', 1)
data_dict[key.strip()] = value.strip()
end_time = time.time()
execution_time = end_time - start_time
print(execution_time)
# Step 2: Convert the dictionary to a DataFrame
# df = pd.DataFrame([data_dict])
#
# # Step 3: Append to an existing CSV file
# # csv_file = 'csvs/company_data.csv' # Replace with your file path
# csv_file = 'csvs/recent_changes_companies.csv'
# df.to_csv(csv_file, mode='a', index=False, header=False)