-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.py
106 lines (86 loc) · 4.89 KB
/
grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import var
from var import 植物, 僵尸, grid_range_x, grid_range_y, grid_Scale_x1, grid_Scale_y1
from rec import 判断植物卡是否可用
from Window import out_text
def grid_check(give, grid):
for i in range(7): #将所有卡片显示 变成不可用状态
var.Card_tf[i] = False
for i in range(len(var.Card)): #将所有卡片 变成不可用状态
var.Card[i] = [0, 0]
for g in var.plant:
g[0] = 0
for row in grid:
for cell in row:
if cell['p'] != 0: # 有植物就计时
cell['p_t'] += 1
if cell['z'] == 1:
cell['z_t'] += 1
for i in range(0, len(give), 4):
cls = give[i] #标签
conf = give[i + 1] #置信值 #保险起见可以加转换类型float(), int()等
if conf > 0.5 and cls != var.拾取物: # 置信度阈值 以及不等于拾取物
x = give[i + 2]
y = give[i + 3]
# 确定格子坐标
grid_x_index = next((index for index, value in enumerate(grid_range_x) if grid_Scale_x1 < x <= value), None) # 生成器,如果满足 坐标x大于格子的左上角x,以及小于等于遍历的grid_range_x,则等于index索引数的格子
grid_y_index = next((index for index, value in enumerate(grid_range_y) if grid_Scale_y1 < y <= value), None) # 生成器,如果满足 坐标y大于格子的左上角y,以及小于等于遍历的grid_range_y,则等于index索引数的格子
# print(f"输出x ={x},y ={y}")
# print(f"输出grid_x_index ={grid_x_index},grid_y_index ={grid_y_index}")
if grid_x_index is not None and grid_y_index is not None: # 如果对象在格子里
if cls in 植物: # 如果判断为植物
if cls in var.att_to_sum: # 如果为攻植
grid[grid_y_index][grid_x_index]['p'] = 1 # 1为攻植
elif cls in var.boom_to_sum:
grid[grid_y_index][grid_x_index]['p'] = 3 # 3为瞬发植物,卷心菜等
elif cls in var.Tombstone_to_sum: # 如果为墓碑
grid[grid_y_index][grid_x_index]['p'] = 4 # 4为墓碑
elif cls in var.sun_to_sum: # 如果为光植
grid[grid_y_index][grid_x_index]['p'] = 2 # 2为光植
else:
grid[grid_y_index][grid_x_index]['p'] = 5 # 4为其他植物
grid[grid_y_index][grid_x_index]['p_t'] = 0 # 重置计数器
var.plant[cls][0] = var.plant[cls][0] + 1 #统计植物数量
elif cls in 僵尸: # 假设2代表僵尸
grid[grid_y_index][grid_x_index]['z'] = 1
grid[grid_y_index][grid_x_index]['z_t'] = 0 # 重置计数器
elif x < var.Card_x1 and cls in var.植物: # 如果是植物并且在卡片范围
# 确定卡片坐标
Card_y_index = next((index for index, value in enumerate(var.Card_range_y) if var.Card_Scale_y1 < y < value), None) # 生成器,小于等于遍历的Card_range_y,则等于index索引数的格子
if Card_y_index is not None:
var.Card[cls][1] = round(var.Card_y[Card_y_index] * (var.pixel[3] - var.pixel[1]) + var.pixel[1]) # 确定某植物卡片的y坐标
var.Card[cls][0] = 判断植物卡是否可用(cls)
if var.Card[cls][0] == 1:
# print(f"输出:var.Card_tf[{Card_y_index}] = True")
var.Card_tf[Card_y_index] = True #只是为了显示卡片状态
else:
var.Card_tf[Card_y_index] = False
p_tick = 12 # 计时器阈值
# 缓冲光植与攻植变动
var.攻植_t = var.攻植_t + 1
var.光植_t = var.光植_t + 1
# print(f"var.攻植_t:{var.攻植_t},var.光植_t :{var.光植_t }")
#分类植物
预光植 = var.sum_plant(var.plant, var.sun_to_sum) #设定阈值,防止跳动
预攻植 = var.sum_plant(var.plant, var.att_to_sum)
if 预光植 >= var.光植:
var.光植_t = 0
var.光植 = 预光植
elif var.光植_t >= p_tick:
var.光植_t = 0
var.光植 = 预光植
if 预攻植 >= var.攻植:
var.攻植_t = 0
var.攻植 = 预攻植
elif var.攻植_t >= p_tick:
var.攻植_t = 0
var.攻植 = 预攻植
tick = 10 # 计时器阈值
for row in grid:
for cell in row:
if cell['p_t'] >= tick:
cell['p'] = 0
cell['p_t'] = 0
if cell['z_t'] >= tick:
cell['z'] = 0
cell['z_t'] = 0
return grid