Skip to content

Latest commit

 

History

History
238 lines (179 loc) · 14.6 KB

README.md

File metadata and controls

238 lines (179 loc) · 14.6 KB

Deep Video Super-Resolution


1) The state-of-the-art VSR


Based on paperwithcode VSR task, this repository contains summary of the state-of-the-art VSR methods.

The state-of-the-art VSR

Model Published Code Year BI degradation Vid4 Y - 4x (PSNR)
PSRT NeurIPS22 PyTorch 2022 28.07
RVRT NeurIPS22 PyTorch 2022 27.99
VRT arXiv PyTorch 2022 27.93
BasicVSR++ CVPR22 PyTorch 2022 27.79
RRN-L arXiv PyTorch 2020 27.69
iSeeBetter Computational Visual Media PyTorch 2020 27.43
PFNL ICCV19 TensorFlow 2019 27.40
IconVSR CVPR21 PyTorch 2021 27.39
ADNLVSR Neurocomputing - 2020 27.39
EDVR CVPR19 PyTorch 2019 27.35
VSR-DUF CVPR18 TensorFlow 2018 27.31
BasicVSR CVPR21 PyTorch 2021 27.24
RBPN/6-PF CVPR19 PyTorch 2019 27.12
TDAN CVPR20 PyTorch 2020 26.86
FRVSR CVPR18 - 2018 26.69
WDVR CVPR19 PyTorch 2019 26.62
MDCN Neurocomputing - 2019 26.49
DDAN IEEE Transactions on Image Processing - 2020 26.48
SOF-VSR IEEE Transactions on Image Processing PyTorch 2020 26.01
DRDVSR ICCV17 TensorFlow 2017 25.88
VESPCN CVPR17 - 2017 25.35
Bicubic (Baseline) 23.82
  • PSRT

  • RVRT

  • VRT

  • BasicVSR++

  • RRN-L

  • iSeeBetter

  • PFNL

  • IconVSR

  • ADNLVSR

  • EDVR

  • VSR-DUF

  • BasicVSR

  • RBPN/6-PF

  • TDAN

  • FRVSR

  • WDVR

  • MDCN

  • DDAN

  • SOF-VSR

  • DRDVSR

  • VESPCN

---

2) The datasets of VSR


Please refer to Dataset.md for more details.


Citation


  • Shi, Shuwei, et al. "Rethinking alignment in video super-resolution transformers." arXiv preprint arXiv:2207.08494 (2022).
  • Liang, Jingyun, et al. "Recurrent Video Restoration Transformer with Guided Deformable Attention." arXiv preprint arXiv:2206.02146 (2022).
  • Liang, Jingyun, et al. "Vrt: A video restoration transformer." arXiv preprint arXiv:2201.12288 (2022).
  • Chan, Kelvin CK, et al. "BasicVSR++: Improving video super-resolution with enhanced propagation and alignment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
  • Isobe, Takashi, Fang Zhu, and Shengjin Wang. "Revisiting Temporal Modeling for Video Super-resolution." arXiv preprint arXiv:2008.05765 (2020).
  • Chadha, Aman, John Britto, and M. Mani Roja. "iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks." Computational Visual Media (2020): 1-12.
  • Yi, Peng, et al. "Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations." Proceedings of the IEEE International Conference on Computer Vision. 2019.
  • Chan, Kelvin CK, et al. "BasicVSR: The search for essential components in video super-resolution and beyond." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
  • Sun, Wei, and Yanning Zhang. "Attention-guided Dual Spatial-Temporal Non-local Network for Video Super-Resolution." Neurocomputing (2020).
  • Wang, Xintao, et al. "Edvr: Video restoration with enhanced deformable convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.
  • Jo, Younghyun, et al. "Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
  • Haris, Muhammad, Gregory Shakhnarovich, and Norimichi Ukita. "Recurrent back-projection network for video super-resolution." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
  • Tian, Yapeng, et al. "TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
  • Sajjadi, Mehdi SM, Raviteja Vemulapalli, and Matthew Brown. "Frame-recurrent video super-resolution." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
  • Fan, Yuchen, et al. "An Empirical Investigation of Efficient Spatio-Temporal Modeling in Video Restoration." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.
  • Purohit, Kuldeep, Srimanta Mandal, and A. N. Rajagopalan. "Mixed-dense connection networks for image and video super-resolution." Neurocomputing (2019).
  • Li, Feng, Huihui Bai, and Yao Zhao. "Learning a Deep Dual Attention Network for Video Super-Resolution." IEEE Transactions on Image Processing 29 (2020): 4474-4488.
  • Wang, Longguang, et al. "Deep Video Super-Resolution using HR Optical Flow Estimation." arXiv preprint arXiv:2001.02129 (2020).
  • Tao, Xin, et al. "Detail-revealing deep video super-resolution." Proceedings of the IEEE International Conference on Computer Vision. 2017.
  • Caballero, Jose, et al. "Real-time video super-resolution with spatio-temporal networks and motion compensation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.