forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoverfitting.py
101 lines (76 loc) · 2.37 KB
/
overfitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# notes for this course can be found at:
# https://deeplearningcourses.com/c/data-science-linear-regression-in-python
# https://www.udemy.com/data-science-linear-regression-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import matplotlib.pyplot as plt
def make_poly(X, deg):
n = len(X)
data = [np.ones(n)]
for d in range(deg):
data.append(X**(d+1))
return np.vstack(data).T
def fit(X, Y):
return np.linalg.solve(X.T.dot(X), X.T.dot(Y))
def fit_and_display(X, Y, sample, deg):
N = len(X)
train_idx = np.random.choice(N, sample)
Xtrain = X[train_idx]
Ytrain = Y[train_idx]
plt.scatter(Xtrain, Ytrain)
plt.show()
# fit polynomial
Xtrain_poly = make_poly(Xtrain, deg)
w = fit(Xtrain_poly, Ytrain)
# display the polynomial
X_poly = make_poly(X, deg)
Y_hat = X_poly.dot(w)
plt.plot(X, Y)
plt.plot(X, Y_hat)
plt.scatter(Xtrain, Ytrain)
plt.title("deg = %d" % deg)
plt.show()
def get_mse(Y, Yhat):
d = Y - Yhat
return d.dot(d) / len(d)
def plot_train_vs_test_curves(X, Y, sample=20, max_deg=20):
N = len(X)
train_idx = np.random.choice(N, sample)
Xtrain = X[train_idx]
Ytrain = Y[train_idx]
test_idx = [idx for idx in range(N) if idx not in train_idx]
# test_idx = np.random.choice(N, sample)
Xtest = X[test_idx]
Ytest = Y[test_idx]
mse_trains = []
mse_tests = []
for deg in range(max_deg+1):
Xtrain_poly = make_poly(Xtrain, deg)
w = fit(Xtrain_poly, Ytrain)
Yhat_train = Xtrain_poly.dot(w)
mse_train = get_mse(Ytrain, Yhat_train)
Xtest_poly = make_poly(Xtest, deg)
Yhat_test = Xtest_poly.dot(w)
mse_test = get_mse(Ytest, Yhat_test)
mse_trains.append(mse_train)
mse_tests.append(mse_test)
plt.plot(mse_trains, label="train mse")
plt.plot(mse_tests, label="test mse")
plt.legend()
plt.show()
plt.plot(mse_trains, label="train mse")
plt.legend()
plt.show()
if __name__ == "__main__":
# make up some data and plot it
N = 100
X = np.linspace(0, 6*np.pi, N)
Y = np.sin(X)
plt.plot(X, Y)
plt.show()
for deg in (5, 6, 7, 8, 9):
fit_and_display(X, Y, 10, deg)
plot_train_vs_test_curves(X, Y)