-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
260 lines (184 loc) · 7.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function, division
import os
import torch
import torch.nn as nn
import numpy as np
from util.util import init_model, init_model_optim
from util.util import init_train_data, init_eval_data
from util.util import save_model
from util.eval_util import compute_metric
from util.torch_util import BatchTensorToVars
from parser.parser import ArgumentParser
import config
args, arg_groups = ArgumentParser(mode='train').parse()
if not os.path.exists(args.result_model_dir):
os.makedirs(args.result_model_dir)
torch.cuda.set_device(args.gpu)
use_cuda = torch.cuda.is_available()
torch.manual_seed(args.seed)
if use_cuda:
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
if args.match_loss:
from model.loss import AffMatchScore, TpsMatchScore
AffMatch = AffMatchScore(**arg_groups['loss'], seg_mask=args.seg_mask)
TpsMatch = TpsMatchScore(use_cuda=use_cuda, **arg_groups['loss'], seg_mask=args.seg_mask)
if args.cycle_loss:
from model.loss import CycleLoss
Cycle = CycleLoss(use_cuda=use_cuda, transform='affine')
if args.trans_loss:
from model.loss import TransLoss
Trans = TransLoss(use_cuda=use_cuda, transform='affine')
if args.coseg_loss:
from model.loss import CosegLoss
Coseg = CosegLoss(use_cuda=use_cuda, transform='affine')
if args.task_loss:
from model.loss import TaskLoss
Task = TaskLoss(use_cuda=use_cuda, transform='affine')
def gen_mask(corr_dict):
mask_AB = torch.max(corr_dict['corr_AB'], dim=1, keepdim=True)[0]
mask_BA = torch.max(corr_dict['corr_BA'], dim=1, keepdim=True)[0]
mask_dict = {
'mask_AB': mask_AB,
'mask_BA': mask_BA,
}
return mask_dict
def loss_match(aff_dict, tps_dict, corr_dict, seg_mask=False):
mask_dict = {
'mask_AB': None,
'mask_BA': None,
}
if seg_mask:
mask_dict = gen_mask(corr_dict)
""" Affine matching score """
aff_AB = AffMatch(matches=corr_dict['corr_AB'],
theta=aff_dict['aff_AB'],
seg_mask=mask_dict['mask_AB'])
aff_BA = AffMatch(matches=corr_dict['corr_BA'],
theta=aff_dict['aff_BA'],
seg_mask=mask_dict['mask_BA'])
aff_match_score = (aff_AB + aff_BA) / 2.0
""" TPS matching score """
tps_AB = TpsMatch(matches=corr_dict['corr_AB'],
theta_aff=aff_dict['aff_AB'],
theta_aff_tps=tps_dict['tps_Awrp_B'],
seg_mask=mask_dict['mask_AB'])
tps_BA = TpsMatch(matches=corr_dict['corr_BA'],
theta_aff=aff_dict['aff_BA'],
theta_aff_tps=tps_dict['tps_Bwrp_A'],
seg_mask=mask_dict['mask_BA'])
tps_match_score = (tps_AB + tps_BA) / 2.0
match_score = aff_match_score + tps_match_score
match_loss = torch.mean(-match_score)
return match_loss
def loss_cycle(aff_dict):
cycle_AB = Cycle(aff_dict['aff_AB'], aff_dict['aff_BA'])
cycle_BA = Cycle(aff_dict['aff_BA'], aff_dict['aff_AB'])
cycle_loss = (cycle_AB + cycle_BA) / 2.0
return cycle_loss
def loss_trans(aff_dict):
trans_ABCA = Trans(aff_dict['aff_AB'], aff_dict['aff_BC'], aff_dict['aff_CA'])
trans_ACBA = Trans(aff_dict['aff_AC'], aff_dict['aff_CB'], aff_dict['aff_BA'])
trans_BACB = Trans(aff_dict['aff_BA'], aff_dict['aff_AC'], aff_dict['aff_CB'])
trans_BCAB = Trans(aff_dict['aff_BC'], aff_dict['aff_CA'], aff_dict['aff_AB'])
trans_CABC = Trans(aff_dict['aff_CA'], aff_dict['aff_AB'], aff_dict['aff_BC'])
trans_CBAC = Trans(aff_dict['aff_CB'], aff_dict['aff_BA'], aff_dict['aff_AC'])
trans_loss = (trans_ABCA + trans_ACBA + trans_BACB + trans_BCAB + trans_CABC + trans_CBAC) / 6.0
return trans_loss
def loss_coseg(batch, mask_dict):
coseg_loss = Coseg(batch, mask_dict)
return coseg_loss
def loss_task(aff_dict, mask_dict):
task_loss = Task(aff_dict, mask_loss)
return task_loss
def print_loss(epoch, idx, num, loss_dict):
print_string = 'Epoch: {} [{}/{} ({:.0f}%)]'.format(epoch, idx, num, 100. * batch_idx / num)
if args.match_loss:
print_string += ' match: {:.6f}'.format(loss_dict['match'])
if args.cycle_loss:
print_string += ' cycle: {:.6f}'.format(loss_dict['cycle'])
if args.trans_loss:
print_string += ' trans: {:.6f}'.format(loss_dict['trans'])
if args.coseg_loss:
print_string += ' coseg: {:.6f}'.format(loss_dict['coseg'])
if args.task_loss:
print_string += ' task: {:.6f}'.format(loss_dict['task'])
print(print_string)
return
def process_epoch(epoch, model, model_opt, dataloader, batch_tnf, log_interval=100):
for batch_idx, batch in enumerate(dataloader):
batch = batch_tnf(batch)
model_opt.zero_grad()
loss_dict = {
'match': 0,
'cycle': 0,
'trans': 0,
'coseg': 0,
'task': 0,
}
aff_dict, tps_dict, corr_dict = model(batch)
loss = 0
if args.match_loss:
match_loss = loss_match(aff_dict, tps_dict, corr_dict, seg_mask=args.seg_mask)
loss_dict['match'] += match_loss.data.cpu().numpy()
loss += args.w_match * match_loss
if args.cycle_loss:
cycle_loss = loss_cycle(aff_dict)
loss_dict['cycle'] += cycle_loss.data.cpu().numpy()
loss += args.w_cycle * cycle_loss
if args.trans_loss:
trans_loss = loss_trans(aff_dict)
loss_dict['trans'] += trans_loss.data.cpu().numpy()
loss += args.w_trans * trans_loss
if args.coseg_loss:
coseg_loss = loss_coseg(aff_dict)
loss_dict['coseg'] += coseg_loss.data.cpu().numpy()
loss += args.w_coseg * coseg_loss
if args.task_loss:
task_loss = loss_task(aff_dict)
loss_dict['task'] += task_loss.data.cpu().numpy()
loss += args.w_task * task_loss
loss.backward()
model_opt.step()
if batch_idx % log_interval == 0:
print_loss(epoch, batch_idx, len(dataloader), loss_dict)
return
def main():
""" Initialize model """
model = init_model(args, arg_groups, use_cuda)
""" Initialize dataloader """
train_data, train_loader = init_train_data(args)
eval_data, eval_loader = init_eval_data(args)
""" Initialize optimizer """
model_opt = init_model_optim(args, model)
batch_tnf = BatchTensorToVars(use_cuda=use_cuda)
""" Evaluate initial condition """
eval_categories = np.array(range(20)) + 1
eval_flag = np.zeros(len(eval_data))
for i in range(len(eval_data)):
eval_flag[i] = sum(eval_categories == eval_data.category[i])
eval_idx = np.flatnonzero(eval_flag)
model.eval()
eval_stats = compute_metric(args.eval_metric, model, eval_data, eval_loader, batch_tnf, args)
best_eval_pck = np.mean(eval_stats['aff_tps'][args.eval_metric][eval_idx])
best_epoch = 1
""" Start training """
for epoch in range(1, args.num_epochs+1):
model.eval()
process_epoch(epoch, model, model_opt, train_loader, batch_tnf)
model.eval()
eval_stats = compute_metric(args.eval_metric, model, eval_data, eval_loader, batch_tnf, args)
eval_pck = np.mean(eval_stats['aff_tps'][args.eval_metric][eval_idx])
is_best = eval_pck > best_eval_pck
if eval_pck > best_eval_pck:
best_eval_pck = eval_pck
best_epoch = epoch
print('eval: {:.3f}'.format(eval_pck),
'best eval: {:.3f}'.format(best_eval_pck),
'best epoch: {}'.format(best_epoch))
""" Early stopping """
if eval_pck < (best_eval_pck - 0.05):
break
save_model(args, model, is_best)
if __name__ == '__main__':
main()