-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_network.py
88 lines (67 loc) · 2.87 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import preprocess
import build_network
import tensorflow as tf
from tensorflow.contrib import seq2seq
# Neural Network Training
# Hyperparameters
# Build the Graph
# Build the graph using the neural network you implemented.
def train(params, vars):
int_text = vars['int_text']
vocab_to_int = vars['vocab_to_int']
int_to_vocab = vars['int_to_vocab']
token_dict = vars['token_dict']
num_epochs = params['num_epochs']
batch_size = params['batch_size']
rnn_size = params['rnn_size']
embed_dim = params['embed_dim']
seq_length = params['seq_length']
learning_rate = params['learning_rate']
keep_prob = params['keep_prob']
show_every_n_batches = params['show_every_n_batches']
save_dir = params['save_dir']
train_graph = tf.Graph()
with train_graph.as_default():
vocab_size = len(int_to_vocab)
input_text, targets, lr = build_network.get_inputs()
input_data_shape = tf.shape(input_text)
cell, initial_state = build_network.get_init_cell(input_data_shape[0], rnn_size, keep_prob)
logits, final_state = build_network.build_nn(cell, input_text, vocab_size, embed_dim)
# Probabilities for generating words
probs = tf.nn.softmax(logits, name='probs')
# Loss function
cost = seq2seq.sequence_loss(
logits,
targets,
tf.ones([input_data_shape[0], input_data_shape[1]]))
# Optimizer
optimizer = tf.train.AdamOptimizer(lr)
# Gradient Clipping
gradients = optimizer.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
train_op = optimizer.apply_gradients(capped_gradients)
# Train
# Train the neural network on the preprocessed data.
batches = build_network.get_batches(int_text, batch_size, seq_length)
with tf.Session(graph=train_graph) as sess:
sess.run(tf.global_variables_initializer())
for epoch_i in range(num_epochs):
state = sess.run(initial_state, {input_text: batches[0][0]})
for batch_i, (x, y) in enumerate(batches):
feed = {
input_text: x,
targets: y,
initial_state: state,
lr: learning_rate}
train_loss, state, _ = sess.run([cost, final_state, train_op], feed)
# Show every <show_every_n_batches> batches
if (epoch_i * len(batches) + batch_i) % show_every_n_batches == 0:
print('Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format(
epoch_i,
batch_i,
len(batches),
train_loss))
# Save Model
saver = tf.train.Saver()
saver.save(sess, save_dir)
print('Model Trained and Saved')