cifar100 + e100 + sgd + mslr + ssl(1e-5)
# vggnet16_bn default training
total - top1 acc: 80.940 top5 acc: 95.550
# vggnet16_bn channel_wise pruning training
total - top1 acc: 80.790 top5 acc: 95.310
# vggnet16_bn filter_and_channel_wise pruning training
total - top1 acc: 80.770 top5 acc: 95.580
# vggnet16_bn filter_and_channel_wise pruning training
total - top1 acc: 80.790 top5 acc: 95.310
cifar100 + e100 + sgd + mslr + ssl(1e-5)
# resnet50 default training
total - top1 acc: 84.070 top5 acc: 96.290
# resnet50 depth_wise pruning training
total - top1 acc: 84.070 top5 acc: 96.290
arch |
prune type |
prune way |
pruning ratio |
actual pruning ratio |
flops/G |
model size/MB |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
vggnet16_bn |
filter_wise |
group_lasso |
20% |
18.56% |
15.51 |
134.68 |
7.67 |
130.88 |
80.810 |
95.090 |
vggnet16_bn |
filter_wise |
mean_abs |
20% |
19.13% |
15.51 |
134.68 |
9.20 |
129.51 |
80.470 |
94.940 |
vggnet16_bn |
filter_wise |
mean |
20% |
19.13% |
15.51 |
134.68 |
10.92 |
69.38 |
79.650 |
94.800 |
vggnet16_bn |
filter_wise |
sum_abs |
20% |
19.13% |
15.51 |
134.68 |
6.75 |
132.22 |
79.440 |
94.880 |
vggnet16_bn |
filter_wise |
sum |
20% |
19.32% |
15.51 |
134.68 |
13.85 |
55.88 |
79.580 |
95.100 |
vggnet16_bn |
filter_wise |
mean_abs |
40% |
39.01% |
15.51 |
134.68 |
6.42 |
112.47 |
78.900 |
94.470 |
vggnet16_bn |
filter_wise |
mean_abs |
40% |
58.71% |
15.51 |
134.68 |
4.60 |
74.06 |
75.880 |
93.090 |
arch |
prune type |
prune way |
pruning ratio |
actual pruning ratio |
flops/G |
model size/MB |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
vggnet16_bn |
channel_wise |
group_lasso |
20% |
18.95% |
15.51 |
134.68 |
8.21 |
131.26 |
80.800 |
95.070 |
vggnet16_bn |
channel_wise |
mean_abs |
20% |
19.38% |
15.51 |
134.68 |
9.57 |
130.53 |
80.660 |
95.280 |
vggnet16_bn |
channel_wise |
mean_abs |
40% |
38.98% |
15.51 |
134.68 |
6.15 |
126.91 |
79.900 |
94.910 |
vggnet16_bn |
channel_wise |
mean_abs |
60% |
59.00% |
15.51 |
134.68 |
4.11 |
123.30 |
78.620 |
94.480 |
arch |
prune type |
prune way |
pruning ratio |
actual pruning ratio |
flops/G |
model size/MB |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
vggnet16_bn |
filter_and_channel_wise |
group_lasso |
20% |
13.91% |
15.51 |
134.68 |
9.56 |
131.94 |
80.53 |
95.320 |
vggnet16_bn |
filter_and_channel_wise |
mean_abs |
20% |
11.29% |
15.51 |
134.68 |
11.36 |
131.84 |
80.720 |
95.130 |
vggnet16_bn |
filter_and_channel_wise |
mean_abs |
40% |
22.98% |
15.51 |
134.68 |
8.98 |
128.81 |
80.040 |
95.180 |
vggnet16_bn |
filter_and_channel_wise |
mean_abs |
60% |
35.07% |
15.51 |
134.68 |
7.45 |
125.67 |
79.570 |
94.920 |
arch |
prune type |
prune way |
N |
flops/G |
model size/MB |
Flops after pruning |
Model size after pruning |
top1 |
top5 |
resnet50 |
depth_wise |
group_lasso |
1 |
4.11 |
23.72 |
3.89 |
23.64 |
83.610 |
95.970 |
resnet50 |
depth_wise |
mean_abs |
1 |
4.11 |
23.72 |
3.89 |
19.25 |
83.630 |
96.090 |
resnet50 |
depth_wise |
mean_abs |
2 |
4.11 |
23.72 |
3.67 |
14.79 |
82.990 |
95.710 |
resnet50 |
depth_wise |
mean_abs |
4 |
4.11 |
23.72 |
3.23 |
13.39 |
82.280 |
95.400 |