-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
309 lines (250 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from __future__ import division
import warnings
import torch.nn as nn
from torch.distributions import Bernoulli
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import dataset
import math
from utils import save_checkpoint, setup_seed
import torch
import os
import logging
import nni
import numpy as np
from nni.utils import merge_parameter
from config import return_args, args
from Networks.TransCrowd import base_patch16_384_gap_decoder
from Networks.DSFormer import *
from image import load_data
warnings.filterwarnings('ignore')
import time
setup_seed(args.seed)
logger = logging.getLogger('mnist_AutoML')
writer = SummaryWriter('logs_total/logs/x')
# The weights below are calculated according to the count range distribution statistics of datasets.
wts_ucf_10 = [0.0664, 0.0908, 0.0990, 0.1034, 0.1060, 0.1073, 0.1084, 0.1090, 0.1092,0.1006]
wts_ucf = [0.0092, 0.1055, 0.1091, 0.1105, 0.1107, 0.1109, 0.1110, 0.1111, 0.1111, 0.1111]
wts_SHHA = [0.0341, 0.0913, 0.1036, 0.1080, 0.1098, 0.1104, 0.1105, 0.1104, 0.1109, 0.1109]
wts_SHHB = [0.0237, 0.0973, 0.1054, 0.1084, 0.1104, 0.1108, 0.1110, 0.1110, 0.1110, 0.1111]
wts_SHHB_20 = [0.0855, 0.0914, 0.1065, 0.1046, 0.1073, 0.1090, 0.1079, 0.1094, 0.1085,0.0700]
def main(args):
if args['dataset'] == 'ShanghaiA':
train_file = './npydata/ShanghaiA_train.npy'
test_file = './npydata/ShanghaiA_test.npy'
elif args['dataset'] == 'ShanghaiB':
train_file = './npydata/ShanghaiB_train.npy'
test_file = './npydata/ShanghaiB_test.npy'
elif args['dataset'] == 'UCF_QNRF':
train_file = './npydata/ucf_qnrf_train.npy'
test_file = './npydata/ucf_qnrf_test.npy'
elif args['dataset'] == 'JHU':
train_file = './npydata/jhu_train.npy'
test_file = './npydata/jhu_val.npy'
elif args['dataset'] == 'NWPU':
train_file = './npydata/nwpu_train.npy'
test_file = './npydata/nwpu_val.npy'
with open(train_file, 'rb') as outfile:
train_list = np.load(outfile).tolist()
with open(test_file, 'rb') as outfile:
val_list = np.load(outfile).tolist()
print(len(train_list), len(val_list))
os.environ['CUDA_VISIBLE_DEVICES'] = args['gpu_id']
model = model_DSFormer(pretrained=True)
model = nn.DataParallel(model, device_ids=[0])
model = model.cuda()
log = open('logs_total/logs/x.txt', mode="w", encoding="utf-8")
print(model, file=log)
log.close()
criterion = nn.SmoothL1Loss(size_average=False).cuda()
density_classify_loss = nn.BCELoss(weight=torch.tensor(wts_SHHA).cuda()).cuda()
optimizer = torch.optim.Adam(
[ #
{'params': model.parameters(), 'lr': args['lr']},
], lr=args['lr'], weight_decay=args['weight_decay'])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80], gamma=0.1, last_epoch=-1)
print(args['pre'])
# args['save_path'] = args['save_path'] + str(args['rdt'])
print(args['save_path'])
if not os.path.exists(args['save_path']):
os.makedirs(args['save_path'])
if args['pre']:
if os.path.isfile(args['pre']):
print("=> loading checkpoint '{}'".format(args['pre']))
checkpoint = torch.load(args['pre'])
model.load_state_dict(checkpoint['state_dict'], strict=False)
args['start_epoch'] = checkpoint['epoch']
args['best_pred'] = checkpoint['best_prec1']
else:
print("=> no checkpoint found at '{}'".format(args['pre']))
torch.set_num_threads(args['workers'])
print(args['best_pred'], args['start_epoch'])
train_data = pre_data(train_list, args, train=True)
test_data = pre_data(val_list, args, train=False)
for epoch in range(args['start_epoch'], args['epochs']):
start = time.time()
train(train_data, model, criterion, density_classify_loss, optimizer, epoch, args, scheduler)
writer.add_scalar('LR', scalar_value=args['lr'], global_step=epoch)
end1 = time.time()
if epoch % 5 == 0 and epoch >= 10:
prec1 = validate(test_data, model, args)
end2 = time.time()
is_best = prec1 < args['best_pred']
args['best_pred'] = min(prec1, args['best_pred'])
writer.add_scalar('MAE', scalar_value=prec1, global_step=epoch)
print(' * best MAE {mae:.3f} '.format(mae=args['best_pred']), args['save_path'], end1 - start, end2 - end1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args['pre'],
'state_dict': model.state_dict(),
'best_prec1': args['best_pred'],
'optimizer': optimizer.state_dict(),
}, is_best, args['save_path'])
writer.close()
def pre_data(train_list, args, train):
print("Pre_load dataset ......")
data_keys = {}
count = 0
for j in range(len(train_list)):
Img_path = train_list[j]
fname = os.path.basename(Img_path)
img, gt_count = load_data(Img_path, args, train)
blob = {}
blob['img'] = img
blob['gt_count'] = gt_count
blob['fname'] = fname
data_keys[count] = blob
count += 1
'''for debug'''
# if j> 10:
# break
return data_keys
def train(Pre_data, model, criterion, density_classify_loss, optimizer, epoch, args, scheduler):
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
train_loader = torch.utils.data.DataLoader(
dataset.listDataset(Pre_data, args['save_path'],
shuffle=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
train=True,
batch_size=args['batch_size'],
num_workers=args['workers'],
args=args),
batch_size=args['batch_size'], drop_last=False)
args['lr'] = optimizer.param_groups[0]['lr']
print('epoch %d, processed %d samples, lr %.10f' % (epoch, epoch * len(train_loader.dataset), args['lr']))
model.train()
end = time.time()
for i, (fname, img, gt_count) in enumerate(train_loader):
data_time.update(time.time() - end)
img = img.cuda()
out1, out2 = model(img) # out1 人数 out2 密度
gt_count = gt_count.type(torch.FloatTensor).cuda().unsqueeze(1)
gt_density_level = np.array(density_level_classify(gt_count.cpu())).astype(float)
gt_density_level = torch.from_numpy(gt_density_level).type(torch.FloatTensor).cuda()
# print(out1.shape, kpoint.shape)
loss1 = criterion(out1, gt_count)
out2 = torch.sigmoid(out2) # sigmoid softmax
loss2 = density_classify_loss(out2, gt_density_level.type(torch.FloatTensor).cuda())
loss2_lamda = 0.001
loss = loss1 + loss2_lamda * loss2
# out1 = model(img)
# gt_count = gt_count.type(torch.FloatTensor).cuda().unsqueeze(1)
# loss = criterion(out1, gt_count)
losses.update(loss.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args['print_freq'] == 0:
print('4_Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
writer.add_scalar('Loss1 Variation', scalar_value=loss1.item(), global_step=epoch)
writer.add_scalar('Loss2 Variation', scalar_value=loss2.item(), global_step=epoch)
writer.add_scalar('Loss Variation', scalar_value=losses.avg, global_step=epoch)
scheduler.step()
def validate(Pre_data, model, args):
print('begin test')
batch_size = 1
test_loader = torch.utils.data.DataLoader(
dataset.listDataset(Pre_data, args['save_path'],
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
]),
args=args, train=False),
batch_size=1)
model.eval()
mae = 0.0
mse = 0.0
for i, (fname, img, gt_count) in enumerate(test_loader):
img = img.cuda()
if len(img.shape) == 5:
img = img.squeeze(0)
if len(img.shape) == 3:
img = img.unsqueeze(0)
with torch.no_grad():
out1,out2 = model(img)
count = torch.sum(out1).item()
gt_count = torch.sum(gt_count).item()
mae += abs(gt_count - count)
mse += abs(gt_count - count) * abs(gt_count - count)
if i % 15 == 0:
print('{fname} Gt {gt:.2f} Pred {pred}'.format(fname=fname[0], gt=gt_count, pred=count))
mae = mae * 1.0 / (len(test_loader) * batch_size)
mse = math.sqrt(mse / (len(test_loader)) * batch_size)
nni.report_intermediate_result(mae)
print(' \n* MAE {mae:.3f}\n'.format(mae=mae), '* MSE {mse:.3f}'.format(mse=mse))
return mae
def density_level_classify(count):
total_res = []
for i in range(len(count)):
res = []
img_area = 384 * 384
max_count = 985 / img_area / 10 # This number is calculated by the maximum count of cropped images of corresponding datasets. Related Codes are shown in plotlabels.py.
t = count[i] / img_area / max_count
t = int(min(t, 9))
for j in range(10):
if t == j:
res.append(1)
else:
res.append(0)
total_res.append(res)
return total_res
def get_classifier_weights(self):
wts = self.count_class_hist
wts = 1 - wts / (sum(wts))
wts = wts / sum(wts)
return wts
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(merge_parameter(return_args, tuner_params))
print(params)
main(params)