-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuge_fibonacci_mod_m.cpp
76 lines (64 loc) · 1.64 KB
/
huge_fibonacci_mod_m.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/**
* Purpose: Calculates Fib(n) mod m where n may be really huge,
* calculate it in iterative way will be take much time.
* Fib(n) mod m is periodic for any integer m >= 2. This period
* is known as Pisano period (https://oeis.org/A001175).
*
* Pisano period begins always with 01
*
* Input: integer n; 1 <= n <= 10^18
* integer m; 2 <= m <= 10^5
* Output: Fib(n) mod m
*/
#include <iostream>
using namespace std;
typedef unsigned long ul;
/**
* Determines the pisano index where the period begins again.
*
* @return Pisano index (length of the period) for the given m
*/
ul pisanoIndex(ul m)
{
ul pisano = 0;
ul fi = 0; // Fib(n)%m
ul fi_0 = 0; // Base case Fib(0)%m
ul fi_1 = 1; // Base case Fib(1)%m
while(true)
{
if(pisano && fi_0%m == 0 && fi_1%m == 1) break;
fi = (fi_0 + fi_1)%m;
fi_0 = fi_1;
fi_1 = fi;
pisano++;
}
return pisano;
}
/**
* Calculates the Fib(n) mod m through Pisano period.
*
* @return Fib(n) mod m
*/
ul fibonacciModM(ul n, ul m)
{
ul fi = 0; // Fib(n)%m
ul fi_0 = 0; // Base case Fib(0)%m
ul fi_1 = 1; // Base case Fib(1)%m
unsigned int lim = n % pisanoIndex(m);
// With the limit determinated, it is enough to
// calculate the Fib(n) mod m with Fib(lim) mod m
for(unsigned int i = 2; i <= lim; i++)
{
fi = (fi_0%m + fi_1%m)%m;
fi_0 = fi_1%m;
fi_1 = fi;
}
return fi;
}
int main()
{
ul n, m;
cin >> n >> m;
cout << fibonacciModM(n, m) << endl;
return 0;
}