-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodules.py
139 lines (98 loc) · 4.01 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.nn.functional as F
# dis_conv
# (https://github.com/JiahuiYu/generative_inpainting/blob/3a5324373ba52c68c79587ca183bc10b9e57b783/inpaint_ops.py#L84)
class _dis_conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=5, stride=2, padding=2):
super().__init__()
self._conv = nn.Sequential(
nn.utils.spectral_norm(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
),
nn.LeakyReLU(inplace=True)
)
# weight initialization
def weight_init(m):
if isinstance(m, nn.Conv2d):
# nn.utils.spectral_norm(m.weight)
nn.init.zeros_(m.bias)
self.apply(weight_init)
def forward(self, x):
return self._conv(x)
# weights are fixed to one, bias to zero
class _one_conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=5, stride=2, padding=2):
super().__init__()
self._conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
)
# weight initialization
def weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
m.weight.requires_grad = False
m.bias.requires_grad = False
self.apply(weight_init)
def forward(self, x):
return self._conv(x)
class _double_conv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=kernel_size, padding=padding),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=kernel_size, padding=padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
# weight initialization
def weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(m.bias)
self.apply(weight_init)
def forward(self, x):
return self.double_conv(x)
class _down_conv2d(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size):
super().__init__()
self.seq_model = nn.Sequential(
nn.MaxPool2d(2),
_double_conv2d(in_channels, out_channels)
)
def forward(self, x):
return self.seq_model(x)
class _up_conv2d(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size):
super().__init__()
self.conv_t = nn.ConvTranspose2d(in_channels, in_channels//2, 2, 2)
self.conv = _double_conv2d(in_channels, out_channels)
# x1 : input, x2 : matching down_conv2d output
def forward(self, x1, x2):
x1 = self.conv_t(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class _final_conv2d(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1)
def forward(self, x):
return self.conv(x)