-
Notifications
You must be signed in to change notification settings - Fork 31
/
asynchronous_one_step_Q_learning.py
244 lines (194 loc) · 7.65 KB
/
asynchronous_one_step_Q_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python
import threading
import tensorflow as tf
import cv2
import sys
sys.path.append("Wrapped Game Code/")
import pong_fun as game # Whichever is imported "as game" will be used
import dummy_game #as game
import tetris_fun #as game
import random
import numpy as np
import time
#Shared global parameters
TMAX = 5000000
T = 0
It = 10000
Iasync = 32
THREADS = 12
WISHED_SCORE = 10
GAME = 'pong' # The name of the game being played for log files
ACTIONS = 3 # Number of valid actions
GAMMA = 0.99 # Decay rate of past observations
OBSERVE = 5. # Timesteps to observe before training
EXPLORE = 400000. # Frames over which to anneal epsilon
FINAL_EPSILONS = [0.01, 0.01, 0.05] # Final values of epsilon
INITIAL_EPSILONS = [0.4, 0.3, 0.3] # Starting values of epsilon
EPSILONS = 3
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.01)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.01, shape = shape)
return tf.Variable(initial)
def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = "SAME")
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME")
def createNetwork():
# network weights
W_conv1 = weight_variable([8, 8, 4, 32])
b_conv1 = bias_variable([32])
W_conv2 = weight_variable([4, 4, 32, 64])
b_conv2 = bias_variable([64])
W_conv3 = weight_variable([3, 3, 64, 64])
b_conv3 = bias_variable([64])
W_fc1 = weight_variable([256, 256])
b_fc1 = bias_variable([256])
W_fc2 = weight_variable([256, ACTIONS])
b_fc2 = bias_variable([ACTIONS])
# input layer
s = tf.placeholder("float", [None, 80, 80, 4])
# hidden layers
h_conv1 = tf.nn.relu(conv2d(s, W_conv1, 4) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2, 2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3, 1) + b_conv3)
h_pool3 = max_pool_2x2(h_conv3)
h_pool3_flat = tf.reshape(h_pool3, [-1, 256])
h_fc1 = tf.nn.relu(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
# readout layer
readout = tf.matmul(h_fc1, W_fc2) + b_fc2
return s, readout, W_conv1, b_conv1, W_conv2, b_conv2, W_conv3, b_conv3, W_fc1, b_fc1, W_fc2, b_fc2
def copyTargetNetwork(sess):
sess.run(copy_Otarget)
def actorLearner(num, sess, lock):
# We use global shared O parameter vector
# We use global shared Otarget parameter vector
# We use global shared counter T, and TMAX constant
global TMAX, T
# Open up a game state to communicate with emulator
lock.acquire()
game_state = game.GameState()
lock.release()
# Initialize network gradients
s_j_batch = []
a_batch = []
y_batch = []
# Get the first state by doing nothing and preprocess the image to 80x80x4
lock.acquire()
x_t, r_0, terminal = game_state.frame_step([1, 0, 0])
lock.release()
x_t = cv2.cvtColor(cv2.resize(x_t, (80, 80)), cv2.COLOR_BGR2GRAY)
s_t = np.stack((x_t, x_t, x_t, x_t), axis = 2)
aux_s = s_t
time.sleep(3*num)
# Initialize target network weights
copyTargetNetwork(sess)
epsilon_index = random.randrange(EPSILONS)
INITIAL_EPSILON = INITIAL_EPSILONS[epsilon_index]
FINAL_EPSILON = FINAL_EPSILONS[epsilon_index]
epsilon = INITIAL_EPSILON
print "THREAD ", num, "STARTING...", "EXPLORATION POLICY => INITIAL_EPSILON:", INITIAL_EPSILON, ", FINAL_EPSILON:", FINAL_EPSILON
# Initialize thread step counter
t = 0
score = 0
while T < TMAX and score < WISHED_SCORE:
# Choose an action epsilon greedily
readout_t = O_readout.eval(session = sess, feed_dict = {s : [s_t]})
a_t = np.zeros([ACTIONS])
action_index = 0
if random.random() <= epsilon or t <= OBSERVE:
action_index = random.randrange(ACTIONS)
a_t[action_index] = 1
else:
action_index = np.argmax(readout_t)
a_t[action_index] = 1
# Scale down epsilon
if epsilon > FINAL_EPSILON and t > OBSERVE:
epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE
# Run the selected action and observe next state and reward
lock.acquire()
x_t1_col, r_t, terminal = game_state.frame_step(a_t)
lock.release()
x_t1 = cv2.cvtColor(cv2.resize(x_t1_col, (80, 80)), cv2.COLOR_BGR2GRAY)
x_t1 = np.reshape(x_t1, (80, 80, 1))
aux_s = np.delete(s_t, 0, axis = 2)
s_t1 = np.append(aux_s, x_t1, axis = 2)
# Accumulate gradients
readout_j1 = Ot_readout.eval(session = sess, feed_dict = {st : [s_t1]})
if terminal:
y_batch.append(r_t)
else:
y_batch.append(r_t + GAMMA * np.max(readout_j1))
a_batch.append(a_t)
s_j_batch.append(s_t)
# Update the old values
s_t = s_t1
T += 1
t += 1
score += r_t
# Update the Otarget network
if T % It == 0:
copyTargetNetwork(sess)
# Update the O network
if t % Iasync == 0 or terminal:
if s_j_batch:
# Perform asynchronous update of O network
train_O.run(session = sess, feed_dict = {
y : y_batch,
a : a_batch,
s : s_j_batch})
#Clear gradients
s_j_batch = []
a_batch = []
y_batch = []
# Save progress every 5000 iterations
if t % 5000 == 0:
saver.save(sess, 'save_networks_asyn/' + GAME + '-dqn', global_step = t)
# Print info
state = ""
if t <= OBSERVE:
state = "observe"
elif t > OBSERVE and t <= OBSERVE + EXPLORE:
state = "explore"
else:
state = "train"
if terminal:
print "THREAD:", num, "/ TIME", T, "/ TIMESTEP", t, "/ STATE", state, "/ EPSILON", epsilon, "/ ACTION", action_index, "/ REWARD", r_t, "/ Q_MAX %e" % np.max(readout_t), "/ SCORE", score
score = 0
# We create the shared global networks
# O network
s, O_readout, W_conv1, b_conv1, W_conv2, b_conv2, W_conv3, b_conv3, W_fc1, b_fc1, W_fc2, b_fc2 = createNetwork()
# Training node
a = tf.placeholder("float", [None, ACTIONS])
y = tf.placeholder("float", [None])
O_readout_action = tf.reduce_sum(tf.mul(O_readout, a), reduction_indices=1)
cost_O = tf.reduce_mean(tf.square(y - O_readout_action))
train_O = tf.train.RMSPropOptimizer(0.00025, 0.95, 0.95, 0.01).minimize(cost_O)
# Otarget network
st, Ot_readout, W_conv1t, b_conv1t, W_conv2t, b_conv2t, W_conv3t, b_conv3t, W_fc1t, b_fc1t, W_fc2t, b_fc2t = createNetwork()
copy_Otarget = [W_conv1t.assign(W_conv1), b_conv1t.assign(b_conv1), W_conv2t.assign(W_conv2), b_conv2t.assign(b_conv2), W_conv3t.assign(W_conv3), b_conv3t.assign(b_conv3), W_fc1t.assign(W_fc1), b_fc1t.assign(b_fc1), W_fc2t.assign(W_fc2), b_fc2t.assign(b_fc2)]
# Initialize session and variables
sess = tf.InteractiveSession()
saver = tf.train.Saver()
sess.run(tf.initialize_all_variables())
checkpoint = tf.train.get_checkpoint_state("save_networks_asyn")
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(sess, checkpoint.model_checkpoint_path)
print "Successfully loaded:", checkpoint.model_checkpoint_path
if __name__ == "__main__":
# Start n concurrent actor threads
lock = threading.Lock()
threads = list()
for i in range(THREADS):
t = threading.Thread(target=actorLearner, args=(i,sess, lock))
threads.append(t)
# Start all threads
for x in threads:
x.start()
# Wait for all of them to finish
for x in threads:
x.join()
print "ALL DONE!!"