-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-12-2.html
138 lines (136 loc) · 5.95 KB
/
1-12-2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
<!DOCTYPE html>
<html lang="zh-TW">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="icon" href="./public/favicon.ico" />
<meta http-equiv="cache-control" content="no-cache" />
<title></title>
<link rel="stylesheet" href=" https://necolas.github.io/normalize.css/8.0.1/normalize.css" />
<link rel="stylesheet" href="./hightlight/default.min.css" />
<link rel="stylesheet" href="./css/main.css" />
<link rel="stylesheet" href="./css/copybutton.css" />
<link rel="stylesheet" href="./css/hightlight.css" />
<script src="./hightlight/hightlight.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.11/clipboard.min.js"></script>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-BEVZJDBC7Z"></script>
<script src="./js/gtag.js"></script>
</head>
<body>
<header>
<nav>
<h1>
<span id="toggle-menu"></span>
<a href="index.html"></a>
</h1>
</nav>
</header>
<main>
<aside>
<nav></nav>
</aside>
<article>
<h2 id="1-12-2">1-12-2 矩陣求解</h2>
<h3>Row Reduction</h3>
<h4>範例1</h4>
<img src="./assets/image/1-12-2/1.jpg" alt="" />
<h4>範例2</h4>
<img src="./assets/image/1-12-2/2.jpg" alt="" />
<h4>範例3</h4>
<img src="./assets/image/1-12-2/3.jpg" alt="" />
<h3>Row Echelon Form</h3>
<p>
線性代數中,一個矩陣如果符合下列條件的話,我們稱之為列階梯形矩陣或列梯形式矩陣(英語:Row
Echelon Form):
</p>
<ul>
<li> 若某列有個非零元素,則必在任何全零列之上。</li>
<li>
某列最左邊的(即第一個)非零元素稱為首項係數(leading entry of
row)。某列的首項係數必定比上一列的首項係數更靠右。
</li>
<li>
因為首項係數要不是最靠右的,要不就是左邊都是零,所以根據上面二點,在首項係數所在的行中,在首項係數下面的元素都會是零。
</li>
</ul>
<img src="./assets/image/1-12-2/4.jpeg" alt="" />
<h3>Reduced Echelon Form</h3>
<p>
簡化行梯形形式(Reduced Row Echelon Form,
RREF)是一種進一步簡化的矩陣形式,它比行梯形形式(Row Echelon Form,
REF)有更嚴格的要求。矩陣處於簡化行梯形形式時,使解線性方程組變得更加直接和清晰。
</p>
<ul>
<li>除包含 Row Echelon Form 條件外,還會要求非零列的首項係數必須是 1[1]</li>
<li>每個 row 的首項係數縱向的其他成員需要為 0。</li>
</ul>
<img src="./assets/image/1-12-2/5.jpeg" alt="" />
<p>得到 Reduced Row Echelon Form, RREF 的2種方式:</p>
<ul>
<li>
<a href="https://www.geogebra.org/classic" target="_blank" rel="noopener noreferrer">
Geogebra-classic
</a>
</li>
<li>Algorithm</li>
</ul>
<h4>Geogebra-classic</h4>
<h4>步驟1</h4>
<img src="./assets/image/1-12-2/6.jpg" alt="" />
<h4>步驟2</h4>
<img src="./assets/image/1-12-2/7.jpg" alt="" />
<h4>步驟3</h4>
<img src="./assets/image/1-12-2/8.jpg" alt="" />
<h4>步驟4</h4>
<img src="./assets/image/1-12-2/9.jpg" alt="" />
<h4>步驟5</h4>
<img src="./assets/image/1-12-2/10.jpg" alt="" />
<h4>步驟6</h4>
<img src="./assets/image/1-12-2/11.jpg" alt="" />
<h4>Algorithm for Finding RREF</h4>
<ol>
<li>Change the leading entry of the next working row to 1.</li>
<li>Eliminate all numbers below the leading entry.</li>
<li>Keep repeating steps 1 and 2 until we find the leading entry for each row.</li>
<li>For each leading entry, eliminate all numbers above it.</li>
</ol>
<p>Example:</p>
<p>First, follow steps 1, 2, and 3.</p>
<img src="./assets/image/1-12-2/12.jpeg" alt="" />
<img src="./assets/image/1-12-2/13.jpg" alt="" />
<img src="./assets/image/1-12-2/14.jpg" alt="" />
<img src="./assets/image/1-12-2/15.jpeg" alt="" />
<p>Then, follow steps 4.</p>
<img src="./assets/image/1-12-2/16.jpeg" alt="" />
<img src="./assets/image/1-12-2/17.jpg" alt="" />
<img src="./assets/image/1-12-2/18.jpg" alt="" />
<h3>Reduced Row Echelon Form 的好處</h3>
<h4>第1個好處</h4>
<img src="./assets/image/1-12-2/19.jpg" alt="" />
<p>快速求解。</p>
<h4>第2個好處</h4>
<p>可以描述多解的組合。</p>
<p>舉例以下例子具有無限多個解,我們需要根據例子界定無限多解的範圍及特性。</p>
<img src="./assets/image/1-12-2/20.jpg" alt="" />
<img src="./assets/image/1-12-2/21.jpg" alt="" />
<img src="./assets/image/1-12-2/22.jpg" alt="" />
<img src="./assets/image/1-12-2/23.jpg" alt="" />
<img src="./assets/image/1-12-2/24.jpg" alt="" />
<p>
解完範例 rref 之後會發現該線性方程組矩陣 X3 有無限多種解。X3 代回第一個線性方程式來看, X1
也會根據 X3 的解的不同而變化。
</p>
<h5>名詞解釋:</h5>
<ul>
<li><strong>Pivots:In RREF,the pivots are the leading entry on each row.</strong></li>
<li><strong>Basic Variable: the variable on pivots position.</strong></li>
<li><strong>Free Variable: Not Basic Variable.</strong></li>
</ul>
<p></p>
</article>
</main>
</body>
<script type="module" src="./js/main.js"></script>
</html>