-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathapp_flux.py
305 lines (274 loc) · 11.2 KB
/
app_flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import argparse
import gradio as gr
from datetime import datetime
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
from model.cloth_masker import AutoMasker, vis_mask
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
from utils import resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="FLUX Try-On Demo")
parser.add_argument(
"--base_model_path",
type=str,
# default="black-forest-labs/FLUX.1-Fill-dev",
default="Models/FLUX.1-Fill-dev",
help="The path to the base model to use for evaluation."
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help="The Path to the checkpoint of trained tryon model."
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written."
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help="Whether or not to allow TF32 on Ampere GPUs."
)
parser.add_argument(
"--width",
type=int,
default=768,
help="The width of the input image."
)
parser.add_argument(
"--height",
type=int,
default=1024,
help="The height of the input image."
)
return parser.parse_args()
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def submit_function_flux(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# Process image editor input
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1:
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255
mask = Image.fromarray(mask)
# Set random seed
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
# Process input images
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
# Adjust image sizes
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline_flux(
image=person_image,
condition_image=cloth_image,
mask_image=mask,
height=args.height,
width=args.width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Post-processing
masked_person = vis_mask(person_image, mask)
# Return result based on show type
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
def app_gradio():
with gr.Blocks(title="CatVTON with FLUX.1-Fill-dev") as demo:
gr.Markdown("# CatVTON with FLUX.1-Fill-dev")
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Row():
image_path_flux = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image_flux = gr.ImageEditor(
interactive=True, label="Person Image", type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image_flux = gr.Image(
interactive=True, label="Condition Image", type="filepath"
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
)
cloth_type = gr.Radio(
label="Try-On Cloth Type",
choices=["upper", "lower", "overall"],
value="upper",
)
submit_flux = gr.Button("Submit")
gr.Markdown(
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
)
with gr.Accordion("Advanced Options", open=False):
num_inference_steps_flux = gr.Slider(
label="Inference Step", minimum=10, maximum=100, step=5, value=50
)
# Guidence Scale
guidance_scale_flux = gr.Slider(
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
)
# Random Seed
seed_flux = gr.Slider(
label="Seed", minimum=-1, maximum=10000, step=1, value=42
)
show_type = gr.Radio(
label="Show Type",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
)
with gr.Column(scale=2, min_width=500):
result_image_flux = gr.Image(interactive=False, label="Result")
with gr.Row():
# Photo Examples
root_path = "resource/demo/example"
with gr.Column():
gr.Examples(
examples=[
os.path.join(root_path, "person", "men", _)
for _ in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path_flux,
label="Person Examples ①",
)
gr.Examples(
examples=[
os.path.join(root_path, "person", "women", _)
for _ in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path_flux,
label="Person Examples ②",
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
)
with gr.Column():
gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", _)
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image_flux,
label="Condition Upper Examples",
)
gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", _)
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image_flux,
label="Condition Overall Examples",
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", _)
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image_flux,
label="Condition Reference Person Examples",
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
)
image_path_flux.change(
person_example_fn, inputs=image_path_flux, outputs=person_image_flux
)
submit_flux.click(
submit_function_flux,
[person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type],
result_image_flux,
)
demo.queue().launch(share=True, show_error=True)
# 解析参数
args = parse_args()
# 加载模型
repo_path = snapshot_download(repo_id=args.resume_path)
pipeline_flux = FluxTryOnPipeline.from_pretrained(args.base_model_path)
pipeline_flux.load_lora_weights(
os.path.join(repo_path, "flux-lora"),
weight_name='pytorch_lora_weights.safetensors'
)
pipeline_flux.to("cuda", torch.bfloat16)
# 初始化 AutoMasker
mask_processor = VaeImageProcessor(
vae_scale_factor=8,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True
)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda'
)
if __name__ == "__main__":
app_gradio()