-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathThermoMechanics_GammaMethod.m
executable file
·156 lines (123 loc) · 4.94 KB
/
ThermoMechanics_GammaMethod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
%% 1-D COUPLED THERMO-MECHANICS FINITE ELEMENT CODE
%
% Equations: \nabla\cdot\sigma + \rho a = 0
% \nabla\cdot j + \rho c \dot{\theta} = 0
% \sigma: stess, rho: density, j: heat flux, c: heat capacity
% a: acceleration, \theta: temperature
%
% Author: Abdullah Waseem
% Created: 19-March-2019
% Contact: engineerabdullah@ymail.com
clear; clc; clf; path(pathdef); format long
addpath FECore/
%% 1D Meshing
xstart = 0; % Start point
xend = 3; % End point
tne = 60; % Total number of element in the domain.
% Element type: Q1 --> LINEAR, Q2 --> QUADRATIC
elementtype = 'Q2';
% Creating 1D Mesh.
[ L, lnn, nne, el, egnn, tnn, x ] = CreateMesh( elementtype, tne, xstart, xend );
%% Material Properties (Constant with in elements -- Q0)
% MECHANICAL
E = 2.1e8; % Elasticity Tensor
Alpha = 11e-6; % Coefficient of Thermal Expansion
rho = 7850; % Density
% THERMAL
Tref = 273; % Reference Temperature
c = 500; % Heat Capacity
lm = .0043; % Thermal Conductivity
%% Pre-calculation of Gauss-Legendre Quadrature, Shape function and their Derivatives
% Gauss Quadrature
ngp = 3;
run('GaussianLegendre.m');
% Shape Functions
run('ShapeFunctions.m');
%% 1D FEM CORE
% Initializing Element Matrices
Me = zeros(nne, nne, tne); % Mass
Ee = zeros(nne, nne, tne); % Stiffness
Ge = zeros(nne, nne, tne); % Coupling
Ce = zeros(nne, nne, tne); % Capacity
Ke = zeros(nne, nne, tne); % Conductivity
Fe = zeros(nne, 1 , tne); % Force
% Element loop
for en = 1 : tne
% Gauss integration loop
for gs = 1 : ngp
% Jacobian Matrix
Jcbn = B(gs,:)*x(egnn(en,:));
% Iso-parameteric map
x_z = N(gs,:) * x(egnn(en,:));
%Force at that gauss point
force = (3*x_z + x_z^2)*exp(x_z); % This is an example
% Element Mass Matrix
Me(:,:,en) = Me(:,:,en) + N(gs,:)' * rho * N(gs,:) * glw(gs) * Jcbn;
% Element Stiffness Matrix
Ee(:,:,en) = Ee(:,:,en) + B(gs,:)'/Jcbn * E * B(gs,:)/Jcbn * glw(gs) * Jcbn;
% Element Coupling Matrix
Ge(:,:,en) = Ge(:,:,en) + B(gs,:)'/Jcbn * Alpha*E * N(gs,:) * glw(gs) * Jcbn;
% Elemental Capacity Matrix
Ce(:,:,en) = Ce(:,:,en) + N(gs,:)' * c * N(gs,:) * glw(gs) * Jcbn;
% Elemental Conductivity Matrix
Ke(:,:,en) = Ke(:,:,en) + B(gs,:)'/Jcbn * lm * B(gs,:)/Jcbn * glw(gs) * Jcbn;
% Element Force Vector
Fe(:,1,en) = Fe(:,1,en) + N(gs,:)' * force * glw(gs) * Jcbn;
end
end
% Assemble barK, barC and barF
[ barM, barE, barF ] = Assembler( egnn, nne, tne, tnn, Me, Ee, Fe, 'sparse' );
[ barG, barC, ~ ] = Assembler( egnn, nne, tne, tnn, Ge, Ce, Fe, 'sparse' );
[ barK, ~ , ~ ] = Assembler( egnn, nne, tne, tnn, Ke, Ke, Fe, 'sparse' );
%% BOUNDARY CONDITIONS
% MECHANICAL/THERMAL -- FIXED AT BOTH ENDS
p = [1 tnn 1+tnn 2*tnn]; % Prescribed
f = setdiff(1:2*tnn,p); % Free
%% GAMMA + MONOLITHIC
% TIME DATA
T = 600; % Total Time
dt = 10; % Time Step Size
tnts = T/dt+1; % Total Number of Time Steps
% TIME SCHEME
Beta = 1;
% INITIALIZING
U = zeros(2*tnn,1); % Total Vector -- Displacement + Temperature
v = zeros(tnn,1); % Velocities
u = zeros(tnn,1); % Displacements
w = 0*ones(tnn,1); % Temperatures
U(tnn+1:2*tnn,1) = 0;
U(tnn+1,1) = 927; U(2*tnn,1) = 0;
F = zeros(2*tnn,1);
% ASSEMBLY OF THE BIG SYSTEM
A = [1/dt*barM+Beta^2*dt*barE -Beta*barG;
Beta*barG' 1/dt*barC+Beta*barK];
% When the system matrices does not change i.e. linear case
% The system matrix can be assembled, combined and decomposed for faster simulations
% This feature was first introduced in Matlab 2017b. If you have an older version of
% Matlab then remove the word "decomposition" from the following line.
Aff = decomposition(A(f,f));
% TIME STEPPING
En = zeros(tnts,1);
for t = 1 : tnts
%Previous data
up = u;
vp = v;
wp = U(tnn+1:2*tnn,1);
% The total Forcing Vector
F = [1/dt*barM*vp-barE*(up+Beta*(1-Beta)*dt*vp)+(1-Beta)*barG*wp;
1/dt*barC*wp-(1-Beta)*barG'*vp-(1-Beta)*barK*wp];
% Solving the Velocities and Temperature
U(f,1) = Aff \ (F(f,1) - A(f,p)*U(p,1));
%
v = U(1:tnn,1);
u = up + dt*(1-Beta)*vp + Beta*dt*v;
w = U(tnn+1:2*tnn,1);
figure(1); subplot(2,1,1,'align'); plot(x,u); title('Displacement'); drawnow
subplot(2,1,2,'align'); plot(x,w); title('Temperature'); drawnow
En(t,1) = 1/2*u'*barE*u + 1/2*v'*barM*v;
end
figure(1); subplot(2,1,1,'align'); plot(x,u); title('Displacement'); drawnow;
subplot(2,1,2,'align'); plot(x,w); title('Temperature'); drawnow;
figure(2);
plot([1:tnts]'*dt,En)
title('Energy')