forked from GeorgyBorisochev/PNM-Generator-and-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassSinglePhaseStokesFlow.cpp
891 lines (825 loc) · 29.1 KB
/
classSinglePhaseStokesFlow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
#include "classPNM.h"
//
//ALGORYTHM
//
template <typename output>
void printVector(vector<output> vector)
{
for (int i = 0; i < vector.size(); i++)
{
cout << vector[i] << " ";
}
cout << endl;
}
//classPNM classPNM::classSinglePhaseStokesFlow::create_A_b(classPNM PNM, classUtils utils)
//{
// //pass necessary properties to algorythm
// PNM.algorithm.conductance = PNM.physics.hydraulic_conductance_throat;
// //define temporary A and b
// int Np = PNM.network.pores.size();
// compressed2D<double> A(Np, Np);
// dense_vector<double> b(Np);
// b = 0.0;
//
// //global P_BC vector
// dense_vector<double> pressure_BC(Np);
// for (int i = 0; i < Np; i++)
// {
// if (PNM.algorithm.inlets[i])
// {
// pressure_BC[i] = PNM.algorithm.Pin;
// }
// else if (PNM.algorithm.outlets[i])
// {
// pressure_BC[i] = (PNM.algorithm.Pin - PNM.algorithm.dP);
// }
// else
// {
// pressure_BC[i] = 0.0;
// }
// }
// PNM.algorithm.pressure_BC = pressure_BC;
// //cout << "pressure_BC = \n" << pressure_BC << "\n\n";
//
// //fill A and b in a different fuction - inserter has to be destroyed
// b = PNM.algorithm.populate_A_b(A, b, PNM);
// //cout << "A = \n" << A << "\n\n";
// //cout << "b = \n" << b << "\n\n";
//
// //pass A and b to class
// PNM.algorithm.A = A;
// PNM.algorithm.b = b;
//
// return PNM;
//}
//
//dense_vector<double> classPNM::classSinglePhaseStokesFlow::populate_A_b(compressed2D<double>& A, dense_vector<double> b, classPNM PNM)
//{
// A = 0.0;
// int Np = PNM.network.pores.size();
// int Nt = PNM.network.throats.size();
// int head, tail; //pore indices for each throat
// double averageDiagonal = 0;
// double minA, maxA, minb, maxb;
// minA = maxA = minb = maxb = 0.0;
// // Create incremental plus inserter for matrix A
// //mat::inserter<compressed2D<double>, update_plus<double>> ins(A);
// mat::inserter<compressed2D<double>> ins(A);
// //laplacian matirx to be created first!
// compressed2D<double> laplacian_A(Np, Np);
//
// //1. create boundary condition pressure vector
// dense_vector<double> pressure_BC(Np);
// for (int i = 0; i < Np; i++)
// {
// if (PNM.algorithm.inlets[i])
// {
// pressure_BC[i] = PNM.algorithm.Pin;
// }
// else if (PNM.algorithm.outlets[i])
// {
// pressure_BC[i] = (PNM.algorithm.Pin - PNM.algorithm.dP);
// }
// else
// {
// pressure_BC[i] = 0.0;
// }
// }
// //cout << "pressure_BC = \n" << pressure_BC << "\n\n";
//
//
// //2. complete laplacian ajaicency marix
// averageDiagonal = PNM.algorithm.laplacian_A(laplacian_A, PNM);
// //cout << "average Diagonal = " << averageDiagonal << "\n";
// //cout << "laplacian_A = \n" << laplacian_A << "\n\n";
//
// //3. multiply laplacian by P_BC for non-BC entries of B
// dense_vector<double> A_BC(Np);
// A_BC = laplacian_A * pressure_BC;
// //cout << "A_BC = \n" << A_BC << "\n\n";
//
// //4. create A: laplacian for non-BC entries, zero for BC entries
// //diagonal filled in a separate pass
// for (int i = 0; i < Nt; i++)
// {
// head = PNM.network.throats[i][0];
// tail = PNM.network.throats[i][1];
// //check if non-BC for head and tail pores:
// if (!PNM.algorithm.inlets[head] && !PNM.algorithm.outlets[head])
// {
// ins[head][head] << laplacian_A[head][head];
// //ins[head][tail] << laplacian_A[head][tail];
// //if (laplacian_A[head][head] < minA) { minA = laplacian_A[head][head]; }
// //if (laplacian_A[head][head] > maxA) { maxA = laplacian_A[head][head]; }
// //if (laplacian_A[head][head] > 1.0) { void __debugbreak(); }
// }
// if (!PNM.algorithm.inlets[tail] && !PNM.algorithm.outlets[tail])
// {
// ins[tail][tail] << laplacian_A[tail][tail];
// //ins[tail][head] << laplacian_A[tail][head];
// //if (laplacian_A[tail][tail] < minA) { minA = laplacian_A[tail][tail]; }
// //if (laplacian_A[tail][tail] > maxA) { maxA = laplacian_A[tail][tail]; }
// //if (laplacian_A[tail][tail] > 1.0) { void __debugbreak(); }
// }
// if ((!PNM.algorithm.inlets[head] && !PNM.algorithm.outlets[head]) && (!PNM.algorithm.inlets[tail] && !PNM.algorithm.outlets[tail]))
// {
// ins[head][tail] << laplacian_A[head][tail];
// ins[tail][head] << laplacian_A[tail][head];
//
// //if (laplacian_A[head][tail] < minA) { minA = laplacian_A[head][tail]; }
// //if (laplacian_A[head][tail] > maxA) { maxA = laplacian_A[head][tail]; }
//
// //if (laplacian_A[tail][head] < minA) { minA = laplacian_A[tail][head]; }
// //if (laplacian_A[tail][head] > maxA) { maxA = laplacian_A[tail][head]; }
//
// //if (laplacian_A[head][tail] > 1.0) { void __debugbreak(); }
// //if (laplacian_A[tail][head] > 1.0) { void __debugbreak(); }
//
// }
// //if (maxA > 1) { cout << i << "\n"; }
// }
//
// //4. cont-d: fill BC diagonal values
// //5. create b: average_diagonal*P_BC for BC entries, -laplacian*P_BC for non-BC entries
// for (int i = 0; i < Np; i++)
// {
// if (PNM.algorithm.inlets[i])
// {
// ins[i][i] << averageDiagonal;
// b[i] = averageDiagonal * PNM.algorithm.Pin;
//
// //if (b[i] < minb) { minb = b[i]; }
// //if (b[i] > maxb) { maxb = b[i]; }
// }
// else if (PNM.algorithm.outlets[i])
// {
// ins[i][i] << averageDiagonal;
// b[i] = averageDiagonal * (PNM.algorithm.Pin - PNM.algorithm.dP);
//
// //if (b[i] < minb) { minb = b[i]; }
// //if (b[i] > maxb) { maxb = b[i]; }
// }
// else
// {
// b[i] = -A_BC[i];
//
// //if (b[i] < minb) { minb = b[i]; }
// //if (b[i] > maxb) { maxb = b[i]; }
// }
// }
// //debug
// /*cout << "minA = " << minA << "\n";
// cout << "maxA = " << maxA << "\n";
// cout << "minb = " << minb << "\n";
// cout << "maxb = " << maxb << "\n";*/
//
// return b;
//}
//
//double classPNM::classSinglePhaseStokesFlow::laplacian_A(compressed2D<double>& laplacian_A, classPNM PNM)
//{
// laplacian_A = 0.0;
// int Np = PNM.network.pores.size();
// int Nt = PNM.network.throats.size();
// int head, tail; //pore indices for each throat
// double averageDiagonal = 0;
// // Create inserter for matrix A
// mat::inserter<compressed2D<double>, update_plus<double>> insert(laplacian_A);
//
// //complete A in laplacian form without BC
// for (int i = 0; i < Nt; i++)
// {
// head = PNM.network.throats[i][0];
// tail = PNM.network.throats[i][1];
//
// insert[head][head] << PNM.algorithm.conductance[i];
// insert[head][tail] << -PNM.algorithm.conductance[i];
//
// insert[tail][tail] << PNM.algorithm.conductance[i];
// insert[tail][head] << -PNM.algorithm.conductance[i];
//
// averageDiagonal += 2 * PNM.algorithm.conductance[i];
// }
// averageDiagonal /= Np;
// return averageDiagonal;
//}
//
//classPNM classPNM::classSinglePhaseStokesFlow::solve_A_b(classPNM PNM, classUtils utils)
//{
// //function for solving matirx equation once
// //local variables
// int Np = PNM.network.pores.size();
// compressed2D<double> A = PNM.algorithm.A;
// dense_vector<double> b = PNM.algorithm.b;
// dense_vector<double> X(Np, 0.0);
// //cout << "b = \n" << b << "\n\n";
//
// // Create an ILU(0) preconditioner
// pc::ilu_0<compressed2D<double>> P(A);
//
// // Termination criterion: r < 1e-6 * b or N iterations
// cyclic_iteration<double> iter(b, 5000, 1.0e-8, 0, 100);
//
// // Solve Ax == b with left preconditioner P
// bicgstab(A, X, b, P, iter);
// //cout << "X = \n" << X << "\n\n";
// PNM.algorithm.X = X;
//
// return PNM;
//}
//
//classPNM classPNM::classSinglePhaseStokesFlow::pass_result_to_phase(classPNM PNM, classUtils utils)
//{
// int Np = PNM.network.pores.size();
// int Nt = PNM.network.throats.size();
// int head, tail;
//
// //pass solution vector X to phase pressure
// //check for pressure values out of bounds - due to unconnected regions
// for (int i = 0; i < Np; i++)
// {
// if (PNM.algorithm.X[i] > PNM.algorithm.Pin) { PNM.phase.pressure_pore[i] = PNM.algorithm.Pin; }
// else if (PNM.algorithm.X[i] < (PNM.algorithm.Pin - PNM.algorithm.dP)) { PNM.phase.pressure_pore[i] = (PNM.algorithm.Pin - PNM.algorithm.dP); }
// else
// {
// PNM.phase.pressure_pore[i] = PNM.algorithm.X[i];
// }
// }
//
// //interpolate pore pressure for throats
// for (int i = 0; i < Nt; i++)
// {
// head = PNM.network.throats[i][0];
// tail = PNM.network.throats[i][1];
// PNM.phase.pressure_throat[i] = 0.5*(PNM.phase.pressure_pore[head] + PNM.phase.pressure_pore[tail]);
// }
// return PNM;
//}
//
//classPNM classPNM::classSinglePhaseStokesFlow::calculate_flow_rate(classPNM PNM, classUtils utils)
//{
// int Np = PNM.network.pores.size();
// int Nt = PNM.network.throats.size();
// int head, tail;
// double Qt;
//
// PNM.algorithm.flow_rate_pore.clear();
// PNM.algorithm.flow_rate_throat.clear();
// vector<double> Qp(Np, 0);
//
// //calculate flow rate for every pore
// for (int i = 0; i < Nt; i++)
// {
// head = PNM.network.throats[i][0];
// tail = PNM.network.throats[i][1];
// Qt = PNM.algorithm.conductance[i] * (PNM.phase.pressure_pore[tail] - PNM.phase.pressure_pore[head]);
//
// Qp[head] -= Qt;
// Qp[tail] += Qt;
// PNM.algorithm.flow_rate_throat.push_back(Qt);
// }
// PNM.algorithm.flow_rate_pore = Qp;
// return PNM;
//}
//
//classPNM classPNM::classSinglePhaseStokesFlow::calculate_effective_permeability(classPNM PNM, classUtils utils)
//{
// double iterator = 0;
// double domain_area = pow(PNM.settings.domain, 2);
//
// int Np = PNM.network.pores.size();
// //calculate Q*viscosity for each inlet pore
// for (int i = 0; i < Np; i++)
// {
// if (PNM.algorithm.inlets[i])
// {
// iterator += PNM.algorithm.flow_rate_pore[i] * PNM.phase.viscosity_pore[i];
// }
// }
//
// //calculate effective permeability in nano-Darcy
// double temp = iterator * PNM.settings.domain / (domain_area * PNM.algorithm.dP) / 9.86e-12 * 1e9;
// cout << "Effective Permeability: " << temp << " [nD]";
// PNM.algorithm.effective_permeability.push_back(temp);
// utils.emptyLine();
//
// return PNM;
//}
//
//classPNM classPNM::classSinglePhaseStokesFlow::run_once(classPNM PNM, classUtils utils)
//{
// PNM = PNM.algorithm.create_A_b(PNM, utils);
// utils.writeLine("Algorythm Parameters Initialised");
//
// PNM = PNM.algorithm.solve_A_b(PNM, utils);
// PNM = PNM.algorithm.pass_result_to_phase(PNM, utils);
// /*utils.writeLine("Linear equation solved");
// utils.emptyLine();*/
// PNM = PNM.algorithm.calculate_flow_rate(PNM, utils);
// PNM = PNM.algorithm.calculate_effective_permeability(PNM, utils);
// return PNM;
//}
//
//classPNM classPNM::classSinglePhaseStokesFlow::run_linear_iterative(classPNM PNM, classUtils utils)
//{
// PNM.algorithm.effective_permeability.clear();
// int n = 5; //iterations
// for (int i = 0; i < n; i++)
// {
// cout << "\n"<<"Solver Iteration " << i << ":\n";
// PNM.methods.methodsPhase.generate_phase_properties(PNM.network, PNM.phase, PNM.methods.methodsPhase);
// PNM.methods.methodsPhysics.generate_physics_properties(PNM.network, PNM.phase, PNM.physics, PNM.methods.methodsPhysics);
// PNM = PNM.algorithm.run_once(PNM, utils);
//
// }
// return PNM;
//}
//
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
create_A_b(classPNM::classNetwork& network,
classPNM::classPhysics& physics,
classPNM::classSinglePhaseStokesFlow& algorithm,
classPNM::classMethods::classMethodsSinglePhaseStokesFlow& methodsAlgorithm)
{
//pass necessary properties to algorythm
algorithm.conductance = physics.hydraulic_conductance_throat;
//define temporary A and b
int Np = network.pores.size();
compressed2D<double> A(Np, Np);
dense_vector<double> b(Np);
b = 0.0;
//global P_BC vector
dense_vector<double> pressure_BC(Np);
for (int i = 0; i < Np; i++)
{
if (algorithm.inlets[i])
{
pressure_BC[i] = algorithm.Pin;
}
else if (algorithm.outlets[i])
{
pressure_BC[i] = (algorithm.Pin - algorithm.dP);
}
else
{
pressure_BC[i] = 0.0;
}
}
algorithm.pressure_BC = pressure_BC;
//cout << "pressure_BC = \n" << pressure_BC << "\n\n";
//fill A and b in a different fuction - inserter has to be destroyed
b = methodsAlgorithm.populate_A_b(A, b, network, algorithm, methodsAlgorithm);
//cout << "A = \n" << A << "\n\n";
//cout << "b = \n" << b << "\n\n";
//pass A and b to class
algorithm.A = A;
algorithm.b = b;
}
dense_vector<double> classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
populate_A_b(compressed2D<double>& A,
dense_vector<double>& b,
classPNM::classNetwork& network,
classPNM::classSinglePhaseStokesFlow& algorithm,
classPNM::classMethods::classMethodsSinglePhaseStokesFlow& methodsAlgorithm)
{
A = 0.0;
int Np = network.pores.size();
int Nt = network.throats.size();
int head, tail; //pore indices for each throat
double averageDiagonal = 0;
double minA, maxA, minb, maxb;
minA = maxA = minb = maxb = 0.0;
// Create incremental plus inserter for matrix A
//mat::inserter<compressed2D<double>, update_plus<double>> ins(A);
mat::inserter<compressed2D<double>> ins(A);
//laplacian matirx to be created first!
compressed2D<double> laplacian_A(Np, Np);
//1. create boundary condition pressure vector
dense_vector<double> pressure_BC(Np);
for (int i = 0; i < Np; i++)
{
if (algorithm.inlets[i])
{
pressure_BC[i] = algorithm.Pin;
}
else if (algorithm.outlets[i])
{
pressure_BC[i] = (algorithm.Pin - algorithm.dP);
}
else
{
pressure_BC[i] = 0.0;
}
}
//cout << "pressure_BC = \n" << pressure_BC << "\n\n";
//2. complete laplacian ajaicency marix
averageDiagonal = methodsAlgorithm.laplacian_A(laplacian_A, network, algorithm);
//cout << "average Diagonal = " << averageDiagonal << "\n";
//cout << "laplacian_A = \n" << laplacian_A << "\n\n";
//3. multiply laplacian by P_BC for non-BC entries of B
dense_vector<double> A_BC(Np);
A_BC = laplacian_A * pressure_BC;
//cout << "A_BC = \n" << A_BC << "\n\n";
//4. create A: laplacian for non-BC entries, zero for BC entries
//diagonal filled in a separate pass
for (int i = 0; i < Nt; i++)
{
head = network.throats[i][0];
tail = network.throats[i][1];
//check if non-BC for head and tail pores:
if (!algorithm.inlets[head] && !algorithm.outlets[head])
{
ins[head][head] << laplacian_A[head][head];
//ins[head][tail] << laplacian_A[head][tail];
//if (laplacian_A[head][head] < minA) { minA = laplacian_A[head][head]; }
//if (laplacian_A[head][head] > maxA) { maxA = laplacian_A[head][head]; }
//if (laplacian_A[head][head] > 1.0) { void __debugbreak(); }
}
if (!algorithm.inlets[tail] && !algorithm.outlets[tail])
{
ins[tail][tail] << laplacian_A[tail][tail];
//ins[tail][head] << laplacian_A[tail][head];
//if (laplacian_A[tail][tail] < minA) { minA = laplacian_A[tail][tail]; }
//if (laplacian_A[tail][tail] > maxA) { maxA = laplacian_A[tail][tail]; }
//if (laplacian_A[tail][tail] > 1.0) { void __debugbreak(); }
}
if ((!algorithm.inlets[head] && !algorithm.outlets[head]) && (!algorithm.inlets[tail] && !algorithm.outlets[tail]))
{
ins[head][tail] << laplacian_A[head][tail];
ins[tail][head] << laplacian_A[tail][head];
//if (laplacian_A[head][tail] < minA) { minA = laplacian_A[head][tail]; }
//if (laplacian_A[head][tail] > maxA) { maxA = laplacian_A[head][tail]; }
//if (laplacian_A[tail][head] < minA) { minA = laplacian_A[tail][head]; }
//if (laplacian_A[tail][head] > maxA) { maxA = laplacian_A[tail][head]; }
//if (laplacian_A[head][tail] > 1.0) { void __debugbreak(); }
//if (laplacian_A[tail][head] > 1.0) { void __debugbreak(); }
}
//if (maxA > 1) { cout << i << "\n"; }
}
//4. cont-d: fill BC diagonal values
//5. create b: average_diagonal*P_BC for BC entries, -laplacian*P_BC for non-BC entries
for (int i = 0; i < Np; i++)
{
if (algorithm.inlets[i])
{
ins[i][i] << averageDiagonal;
b[i] = averageDiagonal * algorithm.Pin;
//if (b[i] < minb) { minb = b[i]; }
//if (b[i] > maxb) { maxb = b[i]; }
}
else if (algorithm.outlets[i])
{
ins[i][i] << averageDiagonal;
b[i] = averageDiagonal * (algorithm.Pin - algorithm.dP);
//if (b[i] < minb) { minb = b[i]; }
//if (b[i] > maxb) { maxb = b[i]; }
}
else
{
b[i] = -A_BC[i];
//if (b[i] < minb) { minb = b[i]; }
//if (b[i] > maxb) { maxb = b[i]; }
}
}
//debug
/*cout << "minA = " << minA << "\n";
cout << "maxA = " << maxA << "\n";
cout << "minb = " << minb << "\n";
cout << "maxb = " << maxb << "\n";*/
return b;
}
double classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
laplacian_A(compressed2D<double>& laplacian_A,
classPNM::classNetwork& network,
classPNM::classSinglePhaseStokesFlow& algorithm)
{
laplacian_A = 0.0;
int Np = network.pores.size();
int Nt = network.throats.size();
int head, tail; //pore indices for each throat
double averageDiagonal = 0;
// Create inserter for matrix A
mat::inserter<compressed2D<double>, update_plus<double>> insert(laplacian_A);
//complete A in laplacian form without BC
for (int i = 0; i < Nt; i++)
{
head = network.throats[i][0];
tail = network.throats[i][1];
insert[head][head] << algorithm.conductance[i];
insert[head][tail] << -algorithm.conductance[i];
insert[tail][tail] << algorithm.conductance[i];
insert[tail][head] << -algorithm.conductance[i];
averageDiagonal += 2 * algorithm.conductance[i];
}
averageDiagonal /= Np;
return averageDiagonal;
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
solve_A_b(classPNM::classNetwork& network,
classPNM::classSinglePhaseStokesFlow& algorithm)
{
cout << "MTL BICGSTAB" << endl;
//function for solving matirx equation once
//local variables
int Np = network.pores.size();
compressed2D<double> * A = &algorithm.A;
dense_vector<double> * b = &algorithm.b;
dense_vector<double> X(Np, 0.0);
//cout << "b = \n" << b << "\n\n";
// Create an ILU(0) preconditioner
pc::ilu_0<compressed2D<double>> P(*A);
// Termination criterion: r < 1e-6 * b or N iterations
cyclic_iteration<double> iter(*b, 5000, 1.0e-8, 0, 100);
// Solve Ax == b with left preconditioner P
bicgstab(*A, X, *b, P, iter);
//cout << "X = \n" << X << "\n\n";
algorithm.X = X;
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
solve_A_b_pypardiso(classPNM::classNetwork& network,
classPNM::classSinglePhaseStokesFlow& algorithm)
{
cout << "PARDISO" << endl;
//function for solving matirx equation once
//local variables
int Np = network.pores.size();
compressed2D<double> * A = &algorithm.A;
dense_vector<double> * bb = &algorithm.b;
dense_vector<double> X(Np, 0.0);
//
//pypradiso example reworked
//
#if !defined(MKL_ILP64)
#define IFORMAT "%i"
#else
#define IFORMAT "%lli"
#endif
vector<int> ia_vec, ja_vec;
vector<double> b_vec;
vector<double> x_vec(Np);
vector<double> bs_vec(Np);
//convert starts and indices to int vectors
for (int i = 0; i < A->starts.size(); i++)
{
ia_vec.push_back((int)A->starts[i] + 1);
}
for (int i = 0; i < A->indices.size(); i++)
{
ja_vec.push_back((int)A->indices[i] + 1);
}
for (int i = 0; i < Np; i++)
{
b_vec.push_back(algorithm.b[i]);
}
MKL_INT n = Np;
MKL_INT* ia = &ia_vec[0];
MKL_INT* ja = &ja_vec[0];
double* a = &A->data[0];
/* RHS and solution vectors. */
double* b = &b_vec[0];
double* x = &x_vec[0];
double* bs = &bs_vec[0];
double res, res0;
MKL_INT mtype = 11; /* Real unsymmetric matrix */
// Descriptor of main sparse matrix properties
struct matrix_descr descrA;
// Structure with sparse matrix stored in CSR format
sparse_matrix_t csrA;
sparse_operation_t transA;
MKL_INT nrhs = 1; /* Number of right hand sides. */
/* Internal solver memory pointer pt, */
/* 32-bit: int pt[64]; 64-bit: long int pt[64] */
/* or void *pt[64] should be OK on both architectures */
void *pt[64];
/* Pardiso control parameters. */
MKL_INT iparm[64];
MKL_INT maxfct, mnum, phase, error, msglvl;
/* Auxiliary variables. */
MKL_INT i, j;
double ddum; /* Double dummy */
MKL_INT idum; /* Integer dummy. */
/* -------------------------------------------------------------------- */
/* .. Setup Pardiso control parameters. */
/* -------------------------------------------------------------------- */
for (i = 0; i < 64; i++)
{
iparm[i] = 0;
}
iparm[0] = 1; /* No solver default */
iparm[1] = 2; /* Fill-in reordering from METIS */
iparm[3] = 0; /* No iterative-direct algorithm */
iparm[4] = 0; /* No user fill-in reducing permutation */
iparm[5] = 0; /* Write solution into x */
iparm[6] = 0; /* Not in use */
iparm[7] = 2; /* Max numbers of iterative refinement steps */
iparm[8] = 0; /* Not in use */
iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */
iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */
iparm[11] = 0; /* Conjugate transposed/transpose solve */
iparm[12] = 1; /* Maximum weighted matching algorithm is switched-on (default for non-symmetric) */
iparm[13] = 0; /* Output: Number of perturbed pivots */
iparm[14] = 0; /* Not in use */
iparm[15] = 0; /* Not in use */
iparm[16] = 0; /* Not in use */
iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
iparm[18] = -1; /* Output: Mflops for LU factorization */
iparm[19] = 0; /* Output: Numbers of CG Iterations */
maxfct = 1; /* Maximum number of numerical factorizations. */
mnum = 1; /* Which factorization to use. */
msglvl = 0; /* Print statistical information */
error = 0; /* Initialize error flag */
/* -------------------------------------------------------------------- */
/* .. Initialize the internal solver memory pointer. This is only */
/* necessary for the FIRST call of the PARDISO solver. */
/* -------------------------------------------------------------------- */
for (i = 0; i < 64; i++)
{
pt[i] = 0;
}
/* -------------------------------------------------------------------- */
/* .. Reordering and Symbolic Factorization. This step also allocates */
/* all memory that is necessary for the factorization. */
/* -------------------------------------------------------------------- */
phase = 11;
PARDISO(pt, &maxfct, &mnum, &mtype, &phase,
&n, a, ia, ja, &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
{
printf("ERROR during symbolic factorization: " IFORMAT, error);
exit(1);
}
//printf("Reordering completed ... ");
//printf("\nNumber of nonzeros in factors = " IFORMAT, iparm[17]);
//printf("\nNumber of factorization MFLOPS = " IFORMAT, iparm[18]);
/* -------------------------------------------------------------------- */
/* .. Numerical factorization. */
/* -------------------------------------------------------------------- */
phase = 22;
PARDISO(pt, &maxfct, &mnum, &mtype, &phase,
&n, a, ia, ja, &idum, &nrhs, iparm, &msglvl, &ddum, &ddum, &error);
if (error != 0)
{
printf("\nERROR during numerical factorization: " IFORMAT, error);
exit(2);
}
//printf("\nFactorization completed ... ");
/* -------------------------------------------------------------------- */
/* .. Back substitution and iterative refinement. */
/* -------------------------------------------------------------------- */
phase = 33;
descrA.type = SPARSE_MATRIX_TYPE_GENERAL;
descrA.mode = SPARSE_FILL_MODE_UPPER;
descrA.diag = SPARSE_DIAG_NON_UNIT;
mkl_sparse_d_create_csr(&csrA, SPARSE_INDEX_BASE_ONE, n, n, ia, ia + 1, ja, a);
//solving Ax=b
iparm[11] = 0; /* Conjugate transposed/transpose solve */
transA = SPARSE_OPERATION_NON_TRANSPOSE;
printf("\nSolving system ...\n", iparm[11]);
PARDISO(pt, &maxfct, &mnum, &mtype, &phase,
&n, a, ia, ja, &idum, &nrhs, iparm, &msglvl, b, x, &error);
if (error != 0)
{
printf("\nERROR during solution: " IFORMAT, error);
exit(3);
}
//put solution into MTL vector X
for (j = 0; j < n; j++)
{
X[j] = x[j];
}
//cout << endl << X << endl;
algorithm.X = X;
// Compute residual
mkl_sparse_d_mv(transA, 1.0, csrA, descrA, x, 0.0, bs);
res = 0.0;
res0 = 0.0;
for (j = 1; j <= n; j++)
{
res += (bs[j - 1] - b[j - 1]) * (bs[j - 1] - b[j - 1]);
res0 += b[j - 1] * b[j - 1];
}
res = sqrt(res) / sqrt(res0);
//printf("\nRelative residual = %e", res);
//cout << "\n\n";
// Check residual
if (res > 1e-10)
{
printf("Error: residual is too high!\n\n");
exit(10 + i);
}
mkl_sparse_destroy(csrA);
/* -------------------------------------------------------------------- */
/* .. Termination and release of memory. */
/* -------------------------------------------------------------------- */
phase = -1; /* Release internal memory. */
PARDISO(pt, &maxfct, &mnum, &mtype, &phase,
&n, &ddum, ia, ja, &idum, &nrhs,
iparm, &msglvl, &ddum, &ddum, &error);
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
pass_result_to_phase(classPNM::classNetwork& network,
classPNM::classMethane& phase,
classPNM::classSinglePhaseStokesFlow& algorithm)
{
int Np = network.pores.size();
int Nt = network.throats.size();
int head, tail;
//pass solution vector X to phase pressure
//check for pressure values out of bounds - due to unconnected regions
for (int i = 0; i < Np; i++)
{
if (algorithm.X[i] > algorithm.Pin) { phase.pressure_pore[i] = algorithm.Pin; }
else if (algorithm.X[i] < (algorithm.Pin - algorithm.dP)) { phase.pressure_pore[i] = (algorithm.Pin - algorithm.dP); }
else
{
phase.pressure_pore[i] = algorithm.X[i];
}
}
//interpolate pore pressure for throats
for (int i = 0; i < Nt; i++)
{
head = network.throats[i][0];
tail = network.throats[i][1];
phase.pressure_throat[i] = 0.5*(phase.pressure_pore[head] + phase.pressure_pore[tail]);
}
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
calculate_flow_rate(classPNM::classNetwork& network,
classPNM::classMethane& phase,
classPNM::classSinglePhaseStokesFlow& algorithm)
{
int Np = network.pores.size();
int Nt = network.throats.size();
int head, tail;
double Qt;
algorithm.flow_rate_pore.clear();
algorithm.flow_rate_throat.clear();
vector<double> Qp(Np, 0);
//calculate flow rate for every pore
for (int i = 0; i < Nt; i++)
{
head = network.throats[i][0];
tail = network.throats[i][1];
Qt = algorithm.conductance[i] * (phase.pressure_pore[tail] - phase.pressure_pore[head]);
Qp[head] -= Qt;
Qp[tail] += Qt;
algorithm.flow_rate_throat.push_back(Qt);
}
algorithm.flow_rate_pore = Qp;
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
calculate_effective_permeability(classPNM::classNetwork& network,
classPNM::classSettings& settings,
classPNM::classMethane& phase,
classPNM::classSinglePhaseStokesFlow& algorithm)
{
double iterator = 0;
double domain_area = pow(settings.domain, 2);
int Np = network.pores.size();
//calculate Q*viscosity for each inlet pore
for (int i = 0; i < Np; i++)
{
if (algorithm.inlets[i])
{
iterator += algorithm.flow_rate_pore[i] * phase.viscosity_pore[i];
}
}
//calculate effective permeability in nano-Darcy
double temp = iterator * settings.domain / (domain_area * algorithm.dP) / 9.86e-12 * 1e9;
cout << "\nEffective Permeability: " << temp << " [nD]" << endl;
algorithm.effective_permeability.push_back(temp);
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
run_once(classPNM::classNetwork& network,
classPNM::classSettings& settings,
classPNM::classMethane& phase,
classPNM::classPhysics& physics,
classPNM::classSinglePhaseStokesFlow& algorithm,
classPNM::classMethods::classMethodsSinglePhaseStokesFlow& methodsAlgorithm)
{
methodsAlgorithm.create_A_b(network, physics, algorithm, methodsAlgorithm);
cout << "Algorythm Parameters Initialised" << endl;
//methodsAlgorithm.solve_A_b(network, algorithm);
methodsAlgorithm.solve_A_b_pypardiso(network, algorithm);
methodsAlgorithm.pass_result_to_phase(network, phase, algorithm);
methodsAlgorithm.calculate_flow_rate(network, phase, algorithm);
methodsAlgorithm.calculate_effective_permeability(network, settings, phase, algorithm);
}
void classPNM::classMethods::classMethodsSinglePhaseStokesFlow::
run_linear_iterative(classPNM::classNetwork& network,
classPNM::classSettings& settings,
classPNM::classMethane& phase,
classPNM::classPhysics& physics,
classPNM::classSinglePhaseStokesFlow& algorithm,
classPNM::classMethods& methods)
{
algorithm.effective_permeability.clear();
int n = settings.n_linear_iterations; //iterations
for (int i = 0; i < n; i++)
{
cout << "\n" << "Solver Iteration " << i << ":\n";
methods.methodsPhase.generate_phase_properties(network, phase, methods.methodsPhase);
methods.methodsPhysics.generate_physics_properties(network, phase, physics, methods.methodsPhysics);
methods.methodsAlgorithm.run_once(network, settings, phase, physics, algorithm, methods.methodsAlgorithm);
}
}