-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
435 lines (377 loc) · 20.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from clean_commit import loading_variable
from split_train_test import info_label
from parameters import read_args
from padding import padding_message, padding_commit_code, mapping_dict_msg, mapping_dict_code
from ultis import mini_batches, mini_batches_update, mini_batches_undersampling
import os, datetime
from model_defect import DefectNet
import torch
import torch.nn as nn
from evaluation import eval
def loading_data(project):
train, test = loading_variable(project + '_train'), loading_variable(project + '_test')
dictionary = (loading_variable(project + '_dict_msg'), loading_variable(project + '_dict_code'))
return train, test, dictionary
def padding_data(data, dictionary, params, type):
if type == 'msg':
pad_msg = padding_message(data=data, max_length=params.msg_length)
pad_msg = mapping_dict_msg(pad_msg=pad_msg, dict_msg=dictionary)
return pad_msg
elif type == 'code':
pad_code = padding_commit_code(data=data, max_line=params.code_line, max_length=params.code_length)
pad_code = mapping_dict_code(pad_code=pad_code, dict_code=dictionary)
return pad_code
else:
print('Your type is incorrect -- please correct it')
exit()
def save(model, save_dir, save_prefix, epochs):
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_prefix = os.path.join(save_dir, save_prefix)
save_path = '{}_{}.pt'.format(save_prefix, epochs)
torch.save(model.state_dict(), save_path)
def running_train(batches_train, batches_test, model, params):
optimizer = torch.optim.Adam(model.parameters(), lr=params.l2_reg_lambda)
steps = 0
for epoch in range(1, params.num_epochs + 1):
for batch in batches_train:
pad_msg, pad_code, labels = batch
if torch.cuda.is_available():
pad_msg, pad_code, labels = torch.tensor(pad_msg).cuda(), torch.tensor(
pad_code).cuda(), torch.cuda.FloatTensor(labels)
else:
pad_msg, pad_code, labels = torch.tensor(pad_msg).long(), torch.tensor(pad_code).long(), torch.tensor(
labels).float()
optimizer.zero_grad()
predict = model.forward(pad_msg, pad_code)
loss = nn.BCELoss()
loss = loss(predict, labels)
loss.backward()
optimizer.step()
steps += 1
if steps % params.log_interval == 0:
print('\rEpoch: {} step: {} - loss: {:.6f}'.format(epoch, steps, loss.item()))
print('Epoch: %i ---Training data' % (epoch))
acc, prc, rc = eval(data=batches_train, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f' % (acc, prc, rc))
print('Epoch: %i ---Testing data' % (epoch))
acc, prc, rc = eval(data=batches_test, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f' % (acc, prc, rc))
save(model, params.save_dir, 'epoch', epoch)
def train_model(train, test, dictionary, params):
ids_train, labels_train, msg_train, code_train = train
ids_test, labels_test, msg_test, code_test = test
dict_msg, dict_code = dictionary
print('Dictionary message: %i -- Dictionary code: %i' % (len(dict_msg), len(dict_code)))
print('Training data')
info_label(labels_train)
pad_msg_train = padding_data(data=msg_train, dictionary=dict_msg, params=params, type='msg')
pad_code_train = padding_data(data=code_train, dictionary=dict_code, params=params, type='code')
print('Testing data')
info_label(labels_test)
pad_msg_test = padding_data(data=msg_test, dictionary=dict_msg, params=params, type='msg')
pad_code_test = padding_data(data=code_test, dictionary=dict_code, params=params, type='code')
# building batches
batches_train = mini_batches(X_msg=pad_msg_train, X_code=pad_code_train, Y=labels_train)
batches_test = mini_batches(X_msg=pad_msg_test, X_code=pad_code_test, Y=labels_test)
# set up parameters
params.cuda = (not params.no_cuda) and torch.cuda.is_available()
del params.no_cuda
params.filter_sizes = [int(k) for k in params.filter_sizes.split(',')]
params.save_dir = os.path.join(params.save_dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
params.vocab_msg, params.vocab_code = len(dict_msg), len(dict_code)
if len(labels_train.shape) == 1:
params.class_num = 1
else:
params.class_num = labels_train.shape[1]
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# create and train the defect model
model = DefectNet(args=params)
if torch.cuda.is_available():
model = model.cuda()
running_train(batches_train=batches_train, batches_test=batches_test, model=model, params=params)
def train_model_mini_batches_update(train, test, dictionary, params):
#####################################################################################################
# training model using 50% of positive and 50% of negative data in mini batch
#####################################################################################################
ids_train, labels_train, msg_train, code_train = train
ids_test, labels_test, msg_test, code_test = test
dict_msg, dict_code = dictionary
print('Dictionary message: %i -- Dictionary code: %i' % (len(dict_msg), len(dict_code)))
print('Training data')
info_label(labels_train)
pad_msg_train = padding_data(data=msg_train, dictionary=dict_msg, params=params, type='msg')
pad_code_train = padding_data(data=code_train, dictionary=dict_code, params=params, type='code')
print('Testing data')
info_label(labels_test)
pad_msg_test = padding_data(data=msg_test, dictionary=dict_msg, params=params, type='msg')
pad_code_test = padding_data(data=code_test, dictionary=dict_code, params=params, type='code')
# set up parameters
params.cuda = (not params.no_cuda) and torch.cuda.is_available()
del params.no_cuda
params.filter_sizes = [int(k) for k in params.filter_sizes.split(',')]
params.save_dir = os.path.join(params.save_dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
params.vocab_msg, params.vocab_code = len(dict_msg), len(dict_code)
if len(labels_train.shape) == 1:
params.class_num = 1
else:
params.class_num = labels_train.shape[1]
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# create and train the defect model
model = DefectNet(args=params)
if torch.cuda.is_available():
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=params.l2_reg_lambda)
steps = 0
batches_test = mini_batches(X_msg=pad_msg_test, X_code=pad_code_test, Y=labels_test)
for epoch in range(1, params.num_epochs + 1):
# building batches for training model
batches_train = mini_batches_update(X_msg=pad_msg_train, X_code=pad_code_train, Y=labels_train)
for batch in batches_train:
pad_msg, pad_code, labels = batch
if torch.cuda.is_available():
pad_msg, pad_code, labels = torch.tensor(pad_msg).cuda(), torch.tensor(
pad_code).cuda(), torch.cuda.FloatTensor(labels)
else:
pad_msg, pad_code, labels = torch.tensor(pad_msg).long(), torch.tensor(pad_code).long(), torch.tensor(
labels).float()
optimizer.zero_grad()
predict = model.forward(pad_msg, pad_code)
loss = nn.BCELoss()
loss = loss(predict, labels)
loss.backward()
optimizer.step()
steps += 1
if steps % params.log_interval == 0:
print('\rEpoch: {} step: {} - loss: {:.6f}'.format(epoch, steps, loss.item()))
print('Epoch: %i ---Training data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_train, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
print('Epoch: %i ---Testing data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_test, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
if epoch % 5 == 0:
save(model, params.save_dir, 'epoch', epoch)
def train_model_mini_batches_undersampling(train, test, dictionary, params):
#####################################################################################################
# training model using under sampling technique to solve the imbalanced problem
#####################################################################################################
ids_train, labels_train, msg_train, code_train = train
ids_test, labels_test, msg_test, code_test = test
dict_msg, dict_code = dictionary
print('Dictionary message: %i -- Dictionary code: %i' % (len(dict_msg), len(dict_code)))
print('Training data')
info_label(labels_train)
pad_msg_train = padding_data(data=msg_train, dictionary=dict_msg, params=params, type='msg')
pad_code_train = padding_data(data=code_train, dictionary=dict_code, params=params, type='code')
print('Testing data')
info_label(labels_test)
pad_msg_test = padding_data(data=msg_test, dictionary=dict_msg, params=params, type='msg')
pad_code_test = padding_data(data=code_test, dictionary=dict_code, params=params, type='code')
# set up parameters
params.cuda = (not params.no_cuda) and torch.cuda.is_available()
del params.no_cuda
params.filter_sizes = [int(k) for k in params.filter_sizes.split(',')]
params.save_dir = os.path.join(params.save_dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
params.vocab_msg, params.vocab_code = len(dict_msg), len(dict_code)
if len(labels_train.shape) == 1:
params.class_num = 1
else:
params.class_num = labels_train.shape[1]
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# create and train the defect model
model = DefectNet(args=params)
if torch.cuda.is_available():
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=params.l2_reg_lambda)
steps = 0
batches_test = mini_batches(X_msg=pad_msg_test, X_code=pad_code_test, Y=labels_test)
for epoch in range(1, params.num_epochs + 1):
# building batches for training model
batches_train = mini_batches_undersampling(X_msg=pad_msg_train, X_code=pad_code_train, Y=labels_train)
for batch in batches_train:
pad_msg, pad_code, labels = batch
if torch.cuda.is_available():
pad_msg, pad_code, labels = torch.tensor(pad_msg).cuda(), torch.tensor(
pad_code).cuda(), torch.cuda.FloatTensor(labels)
else:
pad_msg, pad_code, labels = torch.tensor(pad_msg).long(), torch.tensor(pad_code).long(), torch.tensor(
labels).float()
optimizer.zero_grad()
predict = model.forward(pad_msg, pad_code)
loss = nn.BCELoss()
loss = loss(predict, labels)
loss.backward()
optimizer.step()
steps += 1
if steps % params.log_interval == 0:
print('\rEpoch: {} step: {} - loss: {:.6f}'.format(epoch, steps, loss.item()))
print('Epoch: %i ---Training data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_train, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
print('Epoch: %i ---Testing data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_test, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
if epoch % 5 == 0:
save(model, params.save_dir, 'epoch', epoch)
def custom_loss(y_pred, y_true, weights=None):
if weights is not None:
assert len(weights) == 2
loss = weights[1] * (y_true * torch.log(y_pred)) + weights[0] * ((1 - y_true) * torch.log(1 - y_pred))
else:
loss = y_true * torch.log(y_pred) + (1 - y_true) * torch.log(1 - y_pred)
return torch.neg(torch.mean(loss))
def train_model_loss(project, train, test, dictionary, params):
#####################################################################################################
# training model using penalized classification technique (modify loss function)
#####################################################################################################
ids_train, labels_train, msg_train, code_train = train
ids_test, labels_test, msg_test, code_test = test
dict_msg, dict_code = dictionary
print('Dictionary message: %i -- Dictionary code: %i' % (len(dict_msg), len(dict_code)))
# print('Training data')
# info_label(labels_train)
pad_msg_train = padding_data(data=msg_train, dictionary=dict_msg, params=params, type='msg')
pad_code_train = padding_data(data=code_train, dictionary=dict_code, params=params, type='code')
# print('Testing data')
# info_label(labels_test)
pad_msg_test = padding_data(data=msg_test, dictionary=dict_msg, params=params, type='msg')
pad_code_test = padding_data(data=code_test, dictionary=dict_code, params=params, type='code')
# set up parameters
params.cuda = (not params.no_cuda) and torch.cuda.is_available()
del params.no_cuda
params.filter_sizes = [int(k) for k in params.filter_sizes.split(',')]
params.save_dir = os.path.join(params.save_dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
params.vocab_msg, params.vocab_code = len(dict_msg), len(dict_code)
if len(labels_train.shape) == 1:
params.class_num = 1
else:
params.class_num = labels_train.shape[1]
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# create and train the defect model
model = DefectNet(args=params)
if torch.cuda.is_available():
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=params.l2_reg_lambda)
steps = 0
# building batches
batches_train = mini_batches(X_msg=pad_msg_train, X_code=pad_code_train, Y=labels_train)
batches_test = mini_batches(X_msg=pad_msg_test, X_code=pad_code_test, Y=labels_test)
for epoch in range(1, params.num_epochs + 1):
for batch in batches_train:
pad_msg, pad_code, labels = batch
if torch.cuda.is_available():
pad_msg, pad_code, labels = torch.tensor(pad_msg).cuda(), torch.tensor(
pad_code).cuda(), torch.cuda.FloatTensor(labels)
else:
pad_msg, pad_code, labels = torch.tensor(pad_msg).long(), torch.tensor(pad_code).long(), torch.tensor(
labels).float()
optimizer.zero_grad()
predict = model.forward(pad_msg, pad_code)
if project == 'openstack':
loss = custom_loss(y_pred=predict, y_true=labels, weights=[0.1, 1])
loss.backward()
optimizer.step()
elif project == 'qt':
print('We need to find the weights for negative and positive labels later')
exit()
else:
loss = nn.BCELoss()
loss = loss(predict, labels)
loss.backward()
optimizer.step()
steps += 1
if steps % params.log_interval == 0:
print('\rEpoch: {} step: {} - loss: {:.6f}'.format(epoch, steps, loss.item()))
print('Epoch: %i ---Training data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_train, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
print('Epoch: %i ---Testing data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_test, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
if epoch % 5 == 0:
save(model, params.save_dir, 'epoch', epoch)
def train_model_loss_undersampling(project, train, test, dictionary, params):
#####################################################################################################
# training model using penalized classification technique (modify loss function) and under sampling technique
#####################################################################################################
ids_train, labels_train, msg_train, code_train = train
ids_test, labels_test, msg_test, code_test = test
dict_msg, dict_code = dictionary
print('Dictionary message: %i -- Dictionary code: %i' % (len(dict_msg), len(dict_code)))
print('Training data')
info_label(labels_train)
pad_msg_train = padding_data(data=msg_train, dictionary=dict_msg, params=params, type='msg')
pad_code_train = padding_data(data=code_train, dictionary=dict_code, params=params, type='code')
print('Testing data')
info_label(labels_test)
pad_msg_test = padding_data(data=msg_test, dictionary=dict_msg, params=params, type='msg')
pad_code_test = padding_data(data=code_test, dictionary=dict_code, params=params, type='code')
# set up parameters
params.cuda = (not params.no_cuda) and torch.cuda.is_available()
del params.no_cuda
params.filter_sizes = [int(k) for k in params.filter_sizes.split(',')]
params.save_dir = os.path.join(params.save_dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
params.vocab_msg, params.vocab_code = len(dict_msg), len(dict_code)
if len(labels_train.shape) == 1:
params.class_num = 1
else:
params.class_num = labels_train.shape[1]
params.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# create and train the defect model
model = DefectNet(args=params)
if torch.cuda.is_available():
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=params.l2_reg_lambda)
steps = 0
batches_test = mini_batches(X_msg=pad_msg_test, X_code=pad_code_test, Y=labels_test)
for epoch in range(1, params.num_epochs + 1):
# building batches for training model
batches_train = mini_batches_undersampling(X_msg=pad_msg_train, X_code=pad_code_train, Y=labels_train)
for batch in batches_train:
pad_msg, pad_code, labels = batch
if torch.cuda.is_available():
pad_msg, pad_code, labels = torch.tensor(pad_msg).cuda(), torch.tensor(
pad_code).cuda(), torch.cuda.FloatTensor(labels)
else:
pad_msg, pad_code, labels = torch.tensor(pad_msg).long(), torch.tensor(pad_code).long(), torch.tensor(
labels).float()
optimizer.zero_grad()
predict = model.forward(pad_msg, pad_code)
if project == 'openstack':
loss = custom_loss(y_pred=predict, y_true=labels, weights=[0.1, 1])
loss.backward()
optimizer.step()
elif project == 'qt':
print('We need to find the weights for negative and positive labels later')
exit()
else:
loss = nn.BCELoss()
loss = loss(predict, labels)
loss.backward()
optimizer.step()
steps += 1
if steps % params.log_interval == 0:
print('\rEpoch: {} step: {} - loss: {:.6f}'.format(epoch, steps, loss.item()))
print('Epoch: %i ---Training data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_train, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
print('Epoch: %i ---Testing data' % (epoch))
acc, prc, rc, f1, auc_ = eval(data=batches_test, model=model)
print('Accuracy: %f -- Precision: %f -- Recall: %f -- F1: %f -- AUC: %f' % (acc, prc, rc, f1, auc_))
if epoch % 5 == 0:
save(model, params.save_dir, 'epoch', epoch)
if __name__ == '__main__':
# project: parameters
###########################################################################################
project = 'openstack'
# project = 'qt'
###########################################################################################
train, test, dictionary = loading_data(project=project)
input_option = read_args().parse_args()
input_help = read_args().print_help()
# train_model(train=train, test=test, dictionary=dictionary, params=input_option)
train_model_mini_batches_update(train=train, test=test, dictionary=dictionary, params=input_option)
# train_model_mini_batches_undersampling(train=train, test=test, dictionary=dictionary, params=input_option)
# train_model_loss(project=project, train=train, test=test, dictionary=dictionary, params=input_option)
# train_model_loss_undersampling(project=project, train=train, test=test, dictionary=dictionary, params=input_option)