-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdeepdefense.py
569 lines (469 loc) · 24.7 KB
/
deepdefense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#!/usr/bin/env python
import sys
import os
import os.path as osp
import glog as log
import argparse
import json
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from datasets.mnist import MNISTDataset
from datasets.cifar10 import CIFAR10Dataset
from models.mnist import LeNet, InverseLeNet, MLP, InverseMLP, MLPBN, InverseMLPBN, BNTranspose
from models.cifar10 import ConvNet, InverseConvNet, NIN, InverseNIN
def parse_args():
parser = argparse.ArgumentParser(description='Use DeepDefense to improve robustness')
parser.add_argument('--lr', default=0.0005, type=float,
help='learning rate')
parser.add_argument('--epochs', default=5, type=int,
help='number of epochs to train')
parser.add_argument('--max-iter', default=5, type=int,
help='max iteration in deepfool attack')
parser.add_argument('--lmbd', default=15, type=float,
help='lmbd in regularization term')
parser.add_argument('--c', default=25, type=float,
help='c in regularization term')
parser.add_argument('--d', default=5, type=float,
help='d in regularization term')
parser.add_argument('--decay', default=0.0005, type=float,
help='weight decay')
parser.add_argument('--batch', default=100, type=int,
help='actual batch size in each iteration during training. '
'we use gradient accumulation if args.batch < args.train_batch')
parser.add_argument('--train-batch', default=100, type=int,
help='training batch size. we always collect args.train_batch samples for one update')
parser.add_argument('--test-batch', default=100, type=int,
help='test batch size')
parser.add_argument('--exp-dir', default='output/debug', type=str,
help='directory to save models and logs for current experiment')
parser.add_argument('--pretest', action='store_true',
help='evaluate model before training')
parser.add_argument('--seed', default=1234, type=int,
help='random seed')
parser.add_argument('--dataset', default='mnist', type=str,
help='which dataset to use, e.g., mnist or cifar10')
parser.add_argument('--arch', default='LeNet', type=str,
help='network architecture, e.g., LeNet or MLP')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
class DeepFool(nn.Module):
def __init__(self):
super(DeepFool, self).__init__()
self.num_labels = 10
self.overshot = 0.02
self.max_iter = args.max_iter
# initialize net
if args.dataset == 'mnist':
assert args.arch in ['MLP', 'MLPBN', 'LeNet']
elif args.dataset == 'cifar10':
assert args.arch in ['ConvNet', 'NIN']
else:
raise NotImplementedError
self.net = eval('%s()' % args.arch)
self.net.load_weights()
log.info(self.net)
# initialize inversenet
self.inverse_net = eval('Inverse%s()' % args.arch)
log.info(self.inverse_net)
self.inverse_net.copy_from(self.net)
self.net.cuda()
self.inverse_net.cuda()
self.eps = 5e-6 if args.dataset == 'mnist' else 1e-5 # protect norm againse nan
def net_forward(self, input_image):
return self.net.forward(input_image.cuda())
def inversenet_backward(self, input_image, idx):
return self.inverse_net.forward_from_net(self.net, input_image, idx)
def project_boundary_polyhedron(self, input_grad_, output_):
batch_size = input_grad_.size()[0] # e.g., 100 for mnist
image_dim = input_grad_.size()[1] # e.g., 784 for mnist
# project under l_2 norm
res_ = torch.abs(output_) / torch.norm(input_grad_ + self.eps, p=2, dim=1).view(output_.size())
_, ii = torch.min(res_, 1)
# dir_ = res_[np.arange(batch_size), ii.data].view(batch_size, 1)
# advanced indexing seems to be buggy in pytorch 0.3.x, we use gather instead
dir_ = res_.gather(1, ii.view(batch_size, 1))
w = input_grad_.gather(
2, ii.view(batch_size, 1, 1).expand(batch_size, image_dim, 1)).view(batch_size, image_dim)
dir_ = dir_ * w / torch.norm(w + self.eps, p=2, dim=1).view(batch_size, 1)
return dir_
def forward_correct(self, input_image, label=None, pred=None, check=True):
# this function is called when an image is correctly classified
# label should be true label during training, and None during test
num_image = input_image.size()[0]
image_shape = input_image.size()
self.label = pred.copy()
if check:
if self.training:
# label should be true label
assert label is not None
assert np.all(self.label == label)
else:
# label should be None
assert label is None
outputt = self.net_forward(input_image)
idx = torch.from_numpy(self.label).cuda().view(num_image, 1)
output = outputt - outputt.gather(1, idx).expand_as(outputt)
_, target_labels = torch.sort(-output, dim=1)
target_labels = target_labels.data[:, :self.num_labels]
ww = self.inversenet_backward(input_image, target_labels)
w = ww - ww[:, :, 0].contiguous().view(ww.size()[0], ww.size()[1], 1).expand_as(ww)
self.noises = dict()
self.inputs_perturbed = dict()
self.inputs_perturbed['step_0'] = input_image
self.label_perturbed = self.label.copy()
self.iteration = 0
self.fooled = np.zeros(num_image).astype(np.bool)
while True:
self.iteration += 1
noise_this_step = \
self.project_boundary_polyhedron(w[:, :, 1:], output.gather(1, target_labels[:, 1:].cuda()))
# if an image is already successfully fooled, no more perturbation should be applied to it
t = torch.from_numpy(np.logical_not(self.fooled).astype(np.float32).copy()).cuda()
t = t.view(num_image, 1).expand(num_image, noise_this_step.size()[1])
self.noise_this_step = noise_this_step * t
self.inputs_perturbed['step_%d' % self.iteration] = \
self.inputs_perturbed['step_%d' % (self.iteration - 1)] + self.noise_this_step.view(image_shape)
if len(self.noises) == 0:
self.noises['step_%d' % self.iteration] = self.noise_this_step
else:
self.noises['step_%d' % self.iteration] = \
self.noises['step_%d' % (self.iteration - 1)] + self.noise_this_step
# test whether we have successfully fooled these images
_, t = torch.max(self.net_forward(
input_image + (1 + self.overshot) * self.noises['step_%d' % self.iteration].view(image_shape)), 1)
t = t.data.cpu().numpy().flatten()
for i in range(num_image):
# iterate over all images
if not self.fooled[i]:
self.label_perturbed[i] = t[i]
if t[i] != self.label[i]:
self.fooled[i] = True
if np.all(self.fooled):
# quit if already fooled all images
break
if self.iteration == self.max_iter:
# quit if max iteration
break
# if not quit, prepare the next fooling iteration
outputt = self.net_forward(self.inputs_perturbed['step_%d' % self.iteration])
idx = torch.from_numpy(self.label).cuda().view(num_image, 1)
output = outputt - outputt.gather(1, idx).expand_as(outputt)
ww = self.inversenet_backward(self.inputs_perturbed['step_%d' % self.iteration], target_labels)
w = ww - ww[:, :, 0].contiguous().view(ww.size()[0], ww.size()[1], 1).expand_as(ww)
return (1 + self.overshot) * self.noises['step_%d' % self.iteration]
def forward_wrong(self, input_image, label, pred, check=True):
# this function is called when an image is incorrectly classified
# this function is only called during test, and label is true label
num_image = input_image.size()[0]
image_shape = input_image.size()
self.label = pred.copy()
if check:
assert self.training
assert label is not None
assert np.all(self.label != label)
idx = torch.from_numpy(self.label).cuda().view(num_image, 1)
outputt = self.net_forward(input_image)
output = outputt - outputt.gather(1, idx).expand_as(outputt)
target_labels = torch.from_numpy(np.vstack((self.label, label)).T).cuda()
ww = self.inversenet_backward(input_image, target_labels)
w = ww - ww[:, :, 0].contiguous().view(ww.size()[0], ww.size()[1], 1).expand_as(ww)
self.noises = dict()
self.inputs_perturbed = dict()
self.inputs_perturbed['step_0'] = input_image
self.label_perturbed = self.label.copy()
self.iteration = 0
self.fooled = np.zeros(num_image).astype(np.bool)
while True:
self.iteration += 1
noise_this_step = \
self.project_boundary_polyhedron(w[:, :, 1:], output.gather(1, target_labels[:, 1:].cuda()))
t = torch.from_numpy(np.logical_not(self.fooled).astype(np.float32)).cuda()
t = t.view(num_image, 1).expand(num_image, noise_this_step.size()[1])
self.noise_this_step = noise_this_step * t
self.inputs_perturbed['step_%d' % self.iteration] = \
self.inputs_perturbed['step_%d' % (self.iteration - 1)] + self.noise_this_step.view(image_shape)
if len(self.noises) == 0:
self.noises['step_%d' % self.iteration] = self.noise_this_step
else:
self.noises['step_%d' % self.iteration] = \
self.noises['step_%d' % (self.iteration - 1)] + self.noise_this_step
_, t = torch.max(self.net_forward(
input_image + (1 + self.overshot) * self.noises['step_%d' % self.iteration].view(image_shape)), 1)
t = t.data.cpu().numpy().flatten()
for i in range(num_image):
if not self.fooled[i]:
self.label_perturbed[i] = t[i]
if t[i] == label[i]:
self.fooled[i] = True
if np.all(self.fooled):
break
if self.iteration == self.max_iter:
break
outputt = self.net_forward(self.inputs_perturbed['step_%d' % self.iteration])
idx = torch.from_numpy(self.label).cuda().view(num_image, 1)
output = outputt - outputt.gather(1, idx).expand_as(outputt)
# target will change as fooling process goes on
# this is different from forward_correct
self.label = outputt.data.cpu().numpy().argmax(axis=1)
target_labels = torch.from_numpy(np.vstack((self.label, label)).T).cuda()
ww = self.inversenet_backward(self.inputs_perturbed['step_%d' % self.iteration], target_labels)
w = ww - ww[:, :, 0].contiguous().view(ww.size()[0], ww.size()[1], 1).expand_as(ww)
return (1 + self.overshot) * self.noises['step_%d' % self.iteration]
def forward(self, input_image):
# this function should only be used during test
# in training, use forward_correct and forward_wrong instead
assert not self.training
return self.forward_correct(input_image, check=False)
def test(model, phases='test'):
model.eval()
result = dict()
if isinstance(phases, str):
phases = [phases]
for phase in phases:
log.info('Evaluating deepfool robustness, phase=%s' % phase)
loader = eval('%s_loader' % phase)
num_image = len(loader.dataset)
assert num_image % len(loader) == 0
log.info('Found %d images' % num_image)
accuracy = np.zeros(num_image)
ce_loss = np.zeros(num_image)
noise_norm = np.zeros(num_image)
ratio = np.zeros(num_image)
iteration = np.zeros(num_image)
for index, (image, label) in enumerate(loader):
# get one batch
image_var = image.cuda()
image_var.requires_grad = True
label_var = label.long().cuda()
selected = np.arange(index * args.test_batch, (index + 1) * args.test_batch)
# calculate cross entropy
forward_result_var = model.net(image_var)
ce_loss_var = F.cross_entropy(forward_result_var, label_var)
ce_loss[selected] = ce_loss_var.data.cpu().numpy()
pred = forward_result_var.data.cpu().numpy().argmax(axis=1)
# calculate accuracy
accuracy[selected] = pred == label
# calculate perturbation norm
noise_var = model.forward_correct(image_var, label=label.cpu().numpy(), pred=pred, check=False)
noise_loss_var = torch.norm(noise_var, dim=1)
noise_norm[selected] = noise_loss_var.data.cpu().numpy().flatten()
# calculate ratio
# l_2 norm
t = torch.norm(image_var.view(args.test_batch, -1), dim=1).data.cpu().numpy().flatten()
ratio[selected] = noise_norm[selected] / t
# save number of iteration
iteration[selected] = model.iteration
n = (index + 1) * args.test_batch
if n % 1000 == 0:
log.info('Evaluating %s set %d / %d,' % (phase, n, num_image))
log.info('\tnoise_norm\t: %f' % (noise_norm.sum() / n))
log.info('\tratio\t\t: %f' % (ratio.sum() / n))
log.info('\tce_loss\t\t: %f' % (ce_loss.sum() / n))
log.info('\taccuracy\t: %f' % (accuracy.sum() / n))
log.info('\titeartion\t: %f' % (iteration.sum() / n))
log.info('Performance on %s set is:' % phase)
log.info('\tnoise_norm\t: %f' % noise_norm.mean())
log.info('\tratio\t\t: %f' % ratio.mean())
log.info('\tce_loss\t\t: %f' % ce_loss.mean())
log.info('\taccuracy\t: %f' % accuracy.mean())
result['%s_accuracy' % phase] = accuracy.mean()
result['%s_ratio' % phase] = ratio.mean()
log.info('Performance of current model is:')
for phase in ['train', 'val', 'test']:
if '%s_accuracy' % phase in result:
log.info('\t%s accuracy\t: %f' % (phase, result['%s_accuracy' % phase]))
log.info('\t%s ratio\t: %f' % (phase, result['%s_ratio' % phase]))
def train(model):
num_epoch = args.epochs
def trainable(name):
if 'bn' in name:
return False
return True
trainable_parameters = list(p[1] for p in model.named_parameters() if trainable(p[0]))
optimizer = optim.SGD(trainable_parameters, lr=args.lr, weight_decay=args.decay, momentum=0.9)
log.info('Train {} params among all {} params'.format(len(trainable_parameters), len(list(model.parameters()))))
log.info('Trainable param list: {}'.format(list(p[0] for p in model.named_parameters() if trainable(p[0]))))
num_image = len(train_loader.dataset)
log.info('Found %d images' % num_image)
assert (args.train_batch % args.batch == 0) and (args.train_batch >= args.batch)
for epoch_idx in range(num_epoch):
log.info('Training for %d epoch' % epoch_idx)
model.zero_grad()
# reduce learning
if epoch_idx == (0.8 * args.epochs):
for param_group in optimizer.param_groups:
lr = param_group['lr']
new_lr = lr * 0.5
param_group['lr'] = new_lr
log.info('epoch %d, cut learning rate from %f to %f' % (epoch_idx, lr, new_lr))
perm = np.random.permutation(num_image)
train_loader.dataset.shuffle(perm)
model.train()
for m in model.modules():
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, BNTranspose)):
m.eval()
for index, (image, label) in enumerate(train_loader):
batch_in_train_batch = index % (args.train_batch // args.batch)
if batch_in_train_batch == 0:
noise_norm = np.zeros(args.train_batch)
ratio = np.zeros(args.train_batch)
ce_loss = np.zeros(args.train_batch)
loss = np.zeros(args.train_batch)
accuracy = np.zeros(args.train_batch)
grad_norm = np.zeros(args.train_batch)
optimizer.zero_grad()
# get one batch data
if (args.dataset == 'cifar10') and (args.arch == 'NIN') and (np.random.rand() < 0.5):
# flip with a probability of 50%
inv = torch.arange(image.size(2) - 1, -1, -1).long()
image = image.index_select(2, inv)
image_var = image.cuda()
image_var.requires_grad = True
label_var = label.long().cuda()
# selected index in train batch, used to store ce_loss and loss
selected_in_train_batch = np.arange(batch_in_train_batch * args.batch,
(batch_in_train_batch + 1) * args.batch).astype(np.int)
# split pos and neg
forward_result_var = model.net(image_var)
_, pred = torch.max(forward_result_var, 1)
pred = pred.data.cpu().numpy().flatten()
pos_idx = np.where(pred == label)[0]
neg_idx = np.where(pred != label)[0]
accuracy[selected_in_train_batch] = pred == label
# adversarial training
ce_loss_var = F.cross_entropy(forward_result_var, label_var)
ce_loss_var = ce_loss_var * args.batch / args.train_batch
ce_loss_var.backward(retain_graph=True)
ce_loss[selected_in_train_batch] = ce_loss_var.data.cpu().numpy()
if (args.lmbd > 0) and (pos_idx.size > 0):
pos_idx_var = torch.from_numpy(pos_idx).cuda()
pos_image = image_var.index_select(0, pos_idx_var)
noise_var = model.forward_correct(input_image=pos_image,
label=label[pos_idx],
pred=pred[pos_idx],
check=True)
noise_norm[batch_in_train_batch * args.batch + pos_idx] = torch.norm(noise_var,
dim=1).data.cpu().numpy().flatten()
# l_2 norm
ratio[batch_in_train_batch * args.batch + pos_idx] = \
noise_norm[batch_in_train_batch * args.batch + pos_idx] / \
torch.norm(pos_image.view(pos_idx.size, -1), dim=1).data.cpu().numpy().flatten()
# calculate perturbation norm
noise_loss_var = torch.norm(noise_var, dim=1)
t = pos_image.view(pos_idx.size, -1)
noise_loss_var = noise_loss_var / torch.norm(t, dim=1)
loss_var = args.lmbd * torch.exp(-args.c * noise_loss_var)
loss_var = loss_var.sum()
loss[batch_in_train_batch * args.batch + pos_idx] = loss_var.data.cpu().numpy() / args.batch
# BP
loss_var = loss_var / args.train_batch
loss_var.backward()
if (args.lmbd > 0) and (neg_idx.size > 0):
neg_idx_var = torch.from_numpy(neg_idx).cuda()
neg_image = image_var.index_select(0, neg_idx_var)
noise_var = model.forward_wrong(input_image=neg_image,
label=label[neg_idx],
pred=pred[neg_idx],
check=True)
noise_norm[batch_in_train_batch * args.batch + neg_idx] = \
torch.norm(noise_var, dim=1).data.cpu().numpy().flatten()
# l_2 norm
ratio[batch_in_train_batch * args.batch + neg_idx] = \
noise_norm[batch_in_train_batch * args.batch + neg_idx] /\
torch.norm(neg_image.view(neg_idx.size, -1), dim=1).data.cpu().numpy().flatten()
# calculate perturbation norm
noise_loss_var = torch.norm(noise_var, dim=1)
t = neg_image.view(neg_idx.size, -1)
noise_loss_var = noise_loss_var / torch.norm(t, dim=1)
loss_var = args.lmbd * torch.exp(args.d * noise_loss_var)
loss_var = loss_var.sum()
loss[batch_in_train_batch * args.batch + neg_idx] = loss_var.data.cpu().numpy() / args.batch
# BP
loss_var = loss_var / args.train_batch
loss_var.backward()
# calculate grad norm
for p in model.parameters():
if p.grad is not None:
grad_norm[selected_in_train_batch] += p.grad.data.norm(2) ** 2
grad_norm[selected_in_train_batch] = np.sqrt(grad_norm[selected_in_train_batch])
# update weights
if batch_in_train_batch == (args.train_batch / args.batch - 1):
optimizer.step()
optimizer.zero_grad()
model.zero_grad()
log.info('Processing %d - %d / %d' % ((index + 1) * args.batch - args.train_batch,
(index + 1) * args.batch, num_image))
log.info('\tnoise_norm\t: %f' % noise_norm.mean())
log.info('\tgrad_norm\t: %f' % grad_norm.mean())
log.info('\tratio\t\t: %f' % ratio.mean())
log.info('\tce_loss\t\t: %f' % ce_loss.mean())
log.info('\tloss\t\t: %f' % loss.mean())
log.info('\taccuracy\t: %f' % accuracy.mean())
# evaluate and save model after each epoch
log.info('Evaluating model after epoch %d' % epoch_idx)
test(model, phases='test')
# save model
fname = osp.join(args.exp_dir, 'epoch_%d.model' % epoch_idx)
if not osp.exists(osp.dirname(fname)):
os.makedirs(osp.dirname(fname))
torch.save(model.state_dict(), fname)
log.info('Model of epoch %d saved to %s' % (epoch_idx, fname))
def main():
model = DeepFool()
if args.pretest:
log.info('Evaluating performance before fine-tune')
test(model, phases='test')
log.info('Fine-tuning network')
train(model)
log.info('Saving model')
fname = osp.join(args.exp_dir, 'final.model')
if not osp.exists(osp.dirname(fname)):
os.makedirs(osp.dirname(fname))
torch.save(model.cpu().state_dict(), fname)
log.info('Final model saved to %s' % fname)
if __name__ == '__main__':
args = parse_args()
log.info('Called with args:')
log.info(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
if args.dataset == 'mnist':
train_loader = torch.utils.data.DataLoader(MNISTDataset(phase='trainval'),
batch_size=args.batch, shuffle=False, num_workers=4,
pin_memory=False, drop_last=False)
test_loader = torch.utils.data.DataLoader(MNISTDataset(phase='test'),
batch_size=args.test_batch, shuffle=False, num_workers=4,
pin_memory=False, drop_last=False)
elif args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(CIFAR10Dataset(phase='trainval'),
batch_size=args.batch, shuffle=False, num_workers=4,
pin_memory=False, drop_last=False)
test_loader = torch.utils.data.DataLoader(CIFAR10Dataset(phase='test'),
batch_size=args.test_batch, shuffle=False, num_workers=4,
pin_memory=False, drop_last=False)
else:
raise NotImplementedError
# print this script to log
fname = __file__
if fname.endswith('pyc'):
fname = fname[:-1]
with open(fname, 'r') as f:
log.info(f.read())
# make experiment directory
if not osp.exists(args.exp_dir):
os.makedirs(args.exp_dir)
# dump config
with open(osp.join(args.exp_dir, 'config.json'), 'w') as f:
json.dump(vars(args), f, sort_keys=True, indent=4)
# backup scripts
os.system('cp %s %s' % (fname, args.exp_dir))
os.system('cp -r datasets models %s' % args.exp_dir)
# do the business
main()