This repository has been archived by the owner on Aug 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinput_funcs.py
545 lines (490 loc) · 23.1 KB
/
input_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import yaml
import sys
from msg import MemoryNode, MemorySchemeNode, MemoryScheme
import importlib.machinery
# import keras
class InputSettings:
def __init__(self, results_path, results_filename, layer_filename, layer_number, layer_parallel_processing, precision,
mac_array_info, mac_array_stall, mem_hierarchy_single_simulation, mem_scheme_parallel_processing,
mem_scheme_single, fixed_spatial_unrolling, spatial_unrolling_single, flooring_single,
fixed_temporal_mapping, temporal_mapping_single, tmg_search_method, tmg_search_space, temporal_mapping_multiprocessing,
drc_enabled, PE_RF_size_threshold, PE_RF_depth, CHIP_depth, max_area, utilization_rate_area,
memory_hierarchy_ratio, mem_pool, banking, L1_size, L2_size, unrolling_size_list, unrolling_scheme_list,
unrolling_scheme_list_text, memory_scheme_hint, mh_name, spatial_utilization_threshold, spatial_unrolling_mode,
stationary_optimization_enable, su_parallel_processing, arch_search_result_saving, su_search_result_saving,
tm_search_result_saving, result_print_mode, im2col_enable_all, im2col_enable_pw, memory_unroll_fully_flexible,
result_print_type, save_results_on_the_fly, max_nb_lpf_layer):
self.results_path = results_path
self.results_filename = results_filename
self.layer_filename = layer_filename
self.layer_number = layer_number
self.layer_parallel_processing = layer_parallel_processing
self.precision = precision
self.mac_array_info = mac_array_info
self.mac_array_stall = mac_array_stall
self.energy_over_utilization = True
self.mem_hierarchy_single_simulation = mem_hierarchy_single_simulation
self.mem_scheme_parallel_processing = mem_scheme_parallel_processing
self.mem_scheme_single = mem_scheme_single
self.fixed_spatial_unrolling = fixed_spatial_unrolling
self.spatial_unrolling_single = spatial_unrolling_single
self.flooring_single = flooring_single
self.fixed_temporal_mapping = fixed_temporal_mapping
self.temporal_mapping_single = temporal_mapping_single
self.tmg_search_method = tmg_search_method
self.tmg_search_space = tmg_search_space
self.temporal_mapping_multiprocessing = temporal_mapping_multiprocessing
self.drc_enabled = drc_enabled
self.prune_PE_RF = True
self.mem_hierarchy_iterative_search = False
self.unrolling_size_list = unrolling_size_list
self.unrolling_scheme_list = unrolling_scheme_list
self.unrolling_scheme_list_text = unrolling_scheme_list_text
self.PE_RF_size_threshold = PE_RF_size_threshold
self.PE_RF_depth = PE_RF_depth
self.CHIP_depth = CHIP_depth
self.utilization_optimizer_pruning = False
self.max_area = max_area
self.utilization_rate_area = utilization_rate_area
self.memory_hierarchy_ratio = memory_hierarchy_ratio
self.mem_pool = mem_pool
self.L1_size = L1_size
self.L2_size = L2_size
self.memory_scheme_hint = memory_scheme_hint
self.mh_name = mh_name
self.banking = banking
self.spatial_utilization_threshold = spatial_utilization_threshold
self.spatial_unrolling_mode = spatial_unrolling_mode
self.stationary_optimization_enable = stationary_optimization_enable
self.su_parallel_processing = su_parallel_processing
self.arch_search_result_saving = arch_search_result_saving
self.su_search_result_saving = su_search_result_saving
self.tm_search_result_saving = tm_search_result_saving
self.result_print_mode = result_print_mode
self.im2col_enable_all = im2col_enable_all
self.im2col_enable_pw = im2col_enable_pw
# TODO im2col_top_mem_level
self.im2col_top_mem_level = 100
self.memory_unroll_fully_flexible = memory_unroll_fully_flexible
self.result_print_type = result_print_type
self.save_results_on_the_fly = save_results_on_the_fly
self.max_nb_lpf_layer = max_nb_lpf_layer
def get_input_settings(setting_path, mapping_path, memory_pool_path, architecure_path):
settings_file = open(setting_path)
memory_pool_file = open(memory_pool_path)
architecture_file = open(architecure_path)
mapping_file = open(mapping_path)
fl = yaml.full_load(settings_file)
if fl['result_print_mode'] not in ['concise', 'complete']:
raise ValueError('result_print_mode is not correctly set. Please check the setting file.')
if fl['result_print_type'] not in ['xml', 'yaml']:
raise ValueError('result_print_type is not correctly set. Please check the setting file.')
tm_fixed_flag = fl['fixed_temporal_mapping']
sm_fixed_flag = fl['fixed_spatial_unrolling']
arch_fixed_flag = fl['fixed_architecture']
fl = yaml.full_load(memory_pool_file)
memory_pool = []
for m in fl:
mt = fl[m]['mem_type']
mt_tmp = 0
if mt == 'dual_port_double_buffered': mt_tmp = 3
elif mt == 'dual_port_single_buffered': mt_tmp = 2
elif mt == 'single_port_double_buffered': mt_tmp = 1
if mt_tmp == 0:
raise ValueError("In memory pool, some memory's memory type is not correctly defined.")
mbw = []
for mb in fl[m]['mem_bw']:
mbw.append([mb, mb])
try:
mem_utilization_rate = fl[m]['utilization_rate']
except:
mem_utilization_rate = 0.7
m_tmp = {
'name': m,
'size_bit': fl[m]['size_bit'],
'mem_bw': mbw,
'area': fl[m]['area'],
'utilization_rate': mem_utilization_rate,
'mem_type': mt_tmp,
'cost': [list(a) for a in zip(fl[m]['cost']['read_word'], fl[m]['cost']['write_word'])],
'unroll': 1,
'mem_fifo': False
}
memory_pool.append(m_tmp)
fl = yaml.full_load(architecture_file)
try:
memory_unroll_fully_flexible = fl['memory_unroll_fully_flexible']
except:
memory_unroll_fully_flexible = False
L1_size = fl['L1_size']
L2_size = fl['L2_size']
banking = fl['banking']
area_max_arch = fl['area_max']
area_utilization_arch = fl['area_utilization']
mem_ratio = fl['mem_ratio']
PE_depth = fl['PE_memory_depth']
CHIP_depth = fl['CHIP_memory_depth']
PE_RF_size_threshold = fl['PE_threshold']
mac_array_info = {}
mac_array_stall = {}
mac_array_info['array_size'] = [fl['PE_array']['Col'], fl['PE_array']['Row']]
memory_scheme_hint = MemorySchemeNode([])
mh_name = {'W': [], 'I': [], 'O': []}
if arch_fixed_flag:
for m in fl['memory_hierarchy']:
m_tmp = [x for x in memory_pool if x['name'] == fl['memory_hierarchy'][m]['memory_instance']]
if not m_tmp:
raise Exception("Memory instance " + str(m) + " in hierarchy is not found in memory pool")
m_tmp = m_tmp[0]
m_tmp = MemoryNode(m_tmp, (), 0, 1, m)
m_tmp.memory_level['unroll'] = fl['memory_hierarchy'][m]['memory_unroll']
m_tmp.memory_level['nbanks'] = None
m_tmp.operand = tuple(fl['memory_hierarchy'][m]['operand_stored'])
memory_scheme_hint.memory_scheme.add(m_tmp)
for operand in ['W', 'I', 'O']:
if operand in m_tmp.operand:
mh_name[operand].append(tuple([m, m_tmp.memory_level['size_bit']]))
for operand in ['W', 'I', 'O']:
mh_name[operand].sort(key=lambda tup: tup[1])
mh_name[operand] = [x[0] for x in mh_name[operand]]
else:
if fl['memory_hint']:
for m in fl['memory_hint']:
m_tmp = [x for x in memory_pool if x['name'] == fl['memory_hint'][m]['memory_instance']]
if not m_tmp:
raise Exception("Memory instance " + str(m) + " in hint is not found in memory pool")
m_tmp = m_tmp[0]
memory_pool.remove(m_tmp)
m_tmp = MemoryNode(m_tmp, (), 0, 1)
m_tmp.memory_level['unroll'] = fl['memory_hint'][m]['memory_unroll']
m_tmp.memory_level['nbanks'] = 1
m_tmp.operand = tuple(fl['memory_hint'][m]['operand_stored'])
memory_scheme_hint.memory_scheme.add(m_tmp)
precision = {'W': fl['precision']['W'], 'I': fl['precision']['I'], 'O': fl['precision']['O_partial'],
'O_final': fl['precision']['O_final']}
mac_array_info['single_mac_energy'] = fl['single_mac_energy_active']
mac_array_info['idle_mac_energy'] = fl['single_mac_energy_idle']
p_aux = [precision['W'], precision['I']]
mac_array_info['precision'] = max(p_aux)
mac_array_info['headroom'] = precision['O'] - precision['O_final']
uwe = []
for i in range(0, 10):
uwe.append(0)
mac_array_info['unit_wire_energy'] = uwe
mac_array_stall['systolic'] = fl['mac_array_stall']['systolic']
fl = yaml.full_load(mapping_file)
tm_fixed = {'W': [], 'I': [], 'O': []}
sm_fixed = {'W': [], 'I': [], 'O': []}
flooring_fixed = {'W': [], 'I': [], 'O': []}
unrolling_scheme_list = []
unrolling_size_list = []
i2a = {'B': 7, 'K': 6, 'C': 5, 'OY': 4, 'OX': 3, 'FY': 2, 'FX': 1}
unrolling_scheme_list_text = []
if tm_fixed_flag:
for op in fl['temporal_mapping_fixed']:
if op == 'weight': operand = 'W'
elif op == 'input': operand = 'I'
elif op == 'output': operand = 'O'
tm_fixed[operand] = [[] for x in fl['temporal_mapping_fixed'][op]]
for ii, lev in enumerate(fl['temporal_mapping_fixed'][op]):
index_lev = mh_name[operand].index(lev)
for pf in fl['temporal_mapping_fixed'][op][lev]:
tm_fixed[operand][index_lev].append(tuple([i2a[pf[0]], pf[1]]))
if sm_fixed_flag:
for op in fl['spatial_mapping_fixed']:
if op == 'weight': operand = 'W'
elif op == 'input': operand = 'I'
elif op == 'output': operand = 'O'
sm_fixed[operand] = [[] for x in fl['spatial_mapping_fixed'][op]]
flooring_fixed[operand] = [[] for x in fl['spatial_mapping_fixed'][op]]
for lev in fl['spatial_mapping_fixed'][op]:
ii_lev = 0
if lev == 'MAC' : ii_lev = 0
else : ii_lev = lev + 1
flooring_fixed[operand][ii_lev] = [[] for d in fl['spatial_mapping_fixed'][op][lev]]
for dim in fl['spatial_mapping_fixed'][op][lev]:
ii_dim = 0
if dim == 'Col': ii_dim = 0
elif dim == 'Row': ii_dim = 1
for pf in fl['spatial_mapping_fixed'][op][lev][dim]:
sm_fixed[operand][ii_lev].append(tuple([i2a[pf[0]], pf[1]]))
flooring_fixed[operand][ii_lev][ii_dim].append(i2a[pf[0]])
else:
unrolling_scheme_list_text = fl['spatial_mapping_list']
for us in fl['spatial_mapping_list']:
unrolling_scheme_list.append([])
unrolling_scheme_list[-1] = [[] for x in us]
unrolling_size_list.append([])
unrolling_size_list[-1] = [[] for x in us]
for dim in us:
ii_dim = 0
dimx = next(iter(dim))
if dimx == 'Col': ii_dim = 0
elif dimx == 'Row': ii_dim = 1
for pf in dim[dimx]:
pf_type = list(pf.split('_'))[0]
unrolling_scheme_list[-1][ii_dim].append(i2a[pf_type])
try:
pf_size = list(pf.split('_'))[1]
unrolling_size_list[-1][ii_dim].append(int(pf_size))
except:
pf_size = None
unrolling_size_list[-1][ii_dim].append(pf_size)
settings_file = open(setting_path)
fl = yaml.full_load(settings_file)
if fl['temporal_mapping_search_method'] == 'exhaustive':
tmg_search_method = 1
stationary_optimization_enable = False
data_reuse_threshold = 0
elif fl['temporal_mapping_search_method'] == 'iterative':
tmg_search_method = 0
stationary_optimization_enable = True
data_reuse_threshold = 1
elif fl['temporal_mapping_search_method'] == 'heuristic_v1':
tmg_search_method = 1
stationary_optimization_enable = True
data_reuse_threshold = 0
elif fl['temporal_mapping_search_method'] == 'heuristic_v2':
tmg_search_method = 1
stationary_optimization_enable = True
data_reuse_threshold = 1
elif fl['temporal_mapping_search_method'] == 'loma':
tmg_search_method = 2
stationary_optimization_enable = None
data_reuse_threshold = None
else:
raise ValueError('temporal_mapping_search_method is not correctly set. Please check the setting file.')
# Temporal mapping search space: even or uneven
try:
if fl['temporal_mapping_search_space'] == 'even':
if tmg_search_method == 2: # Only allow even mapping when doing LOMA
tmg_search_space = 'even'
else:
raise ValueError('temporal_mapping_search_space = even is only allowed for LOMA search.')
elif fl['temporal_mapping_search_space'] == 'uneven':
tmg_search_space = 'uneven'
else:
raise ValueError('temporal_mapping_search_space is not correctly set. Please check the setting file.')
except:
print("Temporal mapping search space not defined, generating uneven mappings.")
tmg_search_space = 'uneven'
sumode = ['exhaustive', 'heuristic_v1', 'heuristic_v2', 'hint_driven', 'greedy_mapping_with_hint', 'greedy_mapping_without_hint']
if not fl['fixed_spatial_unrolling']:
sumx = sumode.index(fl['spatial_unrolling_search_method'])
else:
sumx = 0
if type(fl['layer_indices']) is list:
layer_indices = fl['layer_indices']
else:
NN = importlib.machinery.SourceFileLoader('%s' % (fl['layer_filename']), '%s.py' % (fl['layer_filename'])).load_module()
layer_indices = [kk for kk in NN.layer_info.keys()]
try:
save_results_on_the_fly = fl['save_results_on_the_fly']
except:
save_results_on_the_fly = False
try:
max_nb_lpf_layer = fl['max_nb_lpf_layer']
except:
max_nb_lpf_layer = 20
input_settings = InputSettings(fl['result_path'], fl['result_filename'], fl['layer_filename'],
layer_indices, fl['layer_multiprocessing'], precision,
mac_array_info, mac_array_stall, fl['fixed_architecture'],
fl['architecture_search_multiprocessing'], memory_scheme_hint,
fl['fixed_spatial_unrolling'], sm_fixed, flooring_fixed,
fl['fixed_temporal_mapping'], tm_fixed, tmg_search_method,
tmg_search_space, fl['temporal_mapping_multiprocessing'],
data_reuse_threshold, PE_RF_size_threshold, PE_depth,
CHIP_depth, area_max_arch, area_utilization_arch,
mem_ratio, memory_pool, banking, L1_size, L2_size, unrolling_size_list,
unrolling_scheme_list, unrolling_scheme_list_text, memory_scheme_hint, mh_name,
fl['spatial_utilization_threshold'], sumx, stationary_optimization_enable,
fl['spatial_unrolling_multiprocessing'], fl['save_all_architecture_result'],
fl['save_all_spatial_unrolling_result'], fl['save_all_temporal_mapping_result'],
fl['result_print_mode'], fl['im2col_enable_for_all_layers'],
fl['im2col_enable_for_pointwise_layers'], memory_unroll_fully_flexible,
fl['result_print_type'], save_results_on_the_fly, max_nb_lpf_layer)
return input_settings
class layer_spec1(object):
def __init__(self):
self.layer_info = {}
def get_layer_spec(input_settings, model=None):
"""
Function that gets the layer_spec according from the input_settings
If a Keras model is provided, it will update the layer spec accordingly
Arguments
=========
- input_settings: The input settings to get the layer_spec file location
- model: A keras model that constitutes of a number of Conv2D layers
"""
if input_settings:
layer_filename = input_settings.layer_filename
layer_spec = importlib.machinery.SourceFileLoader('%s' % (layer_filename), '%s.py' % (layer_filename)).load_module()
''' For Windows compatibility
Cannot pickle a module object so have to change it to a class object '''
layer_spec_info = layer_spec.layer_info
layer_spec = layer_spec1()
layer_spec.layer_info = layer_spec_info
layer_numbers = input_settings.layer_number
else:
layer_spec = layer_spec1()
if model is not None:
layer_numbers = update_layer_spec(layer_spec, model)
for layer_number, specs in layer_spec.layer_info.items():
if layer_number in layer_numbers: # Only care about layers we have to process
G = specs.get('G',1)
C = specs['C']
K = specs['K']
if G != 1:
div_C, mod_C = divmod(C, G)
div_K, mod_K = divmod(K, G)
assert (mod_C == 0 and mod_K == 0), "C and/or K not divisible by number of groups for layer %d" % layer_number
layer_spec.layer_info[layer_number]['C'] = div_C
layer_spec.layer_info[layer_number]['K'] = div_K
print("Grouped convolution detected for %s Layer %d. Terminal prints will show total energy of all groups combined."
% (input_settings.layer_filename.split('/')[-1], layer_number))
print()
return layer_spec, layer_numbers
def update_layer_spec(layer_spec, model):
"""
Function that changes the layer_spec according to a keras model.
Arguments
=========
- layer_spec: The layer_spec module that will be updated
- input_settings: The input settings, needed to update the layer_number variable
- model: A keras model that constitutes of a number of Conv2D layers
"""
import keras
# Clear any entries present in layer_spec
layer_spec.layer_info = {}
layer_numbers = []
layer_ii = 0
# Iterate through model layers
for layer_idx, layer in enumerate(model.layers):
layer_number = layer_idx + 1
print(layer_idx, type(layer))
# Get the specs for this layer
if isinstance(layer, keras.layers.Conv1D) or \
isinstance(layer, keras.layers.Conv2D) or \
isinstance(layer, keras.layers.Conv3D) or \
isinstance(layer, keras.layers.SeparableConv1D) or \
isinstance(layer, keras.layers.SeparableConv2D) or \
isinstance(layer, keras.layers.DepthwiseConv2D) or \
isinstance(layer, keras.layers.Dense):
layer_ii += 1
b = layer.input_shape[0]
if b is None:
b = 1
if isinstance(layer, keras.layers.SeparableConv1D) or \
isinstance(layer, keras.layers.SeparableConv2D):
# manually split a SeparableConv into 2 layers: depthwise & pointwise
c = layer.input_shape[3]
ox = layer.output_shape[1]
oy = layer.output_shape[2]
k = layer.input_shape[3] * layer.depth_multiplier
fx = layer.kernel_size[0]
fy = layer.kernel_size[1]
sx = layer.strides[0]
sy = layer.strides[1]
sfx = layer.dilation_rate[0]
sfy = layer.dilation_rate[1]
px = 0
py = 0
g = layer.input_shape[3]
# Update the layer_spec variable
layer_spec.layer_info[layer_ii] = {
'B': b,
'K': k,
'C': c,
'OY': oy,
'OX': ox,
'FY': fy,
'FX': fx,
'SY': sy,
'SX': sx,
'SFY': sfy,
'SFX': sfx,
'PY': py,
'PX': px,
'G': g
}
# Add this layer number to layer_numbers
layer_numbers.append(layer_ii)
layer_ii += 1
c = layer.output_shape[3] * layer.depth_multiplier
ox = layer.output_shape[1]
oy = layer.output_shape[2]
k = layer.output_shape[3]
fx = 1
fy = 1
sx = 1
sy = 1
sfx = 1
sfy = 1
px = 0
py = 0
g = 1
elif isinstance(layer, keras.layers.DepthwiseConv2D):
c = layer.input_shape[3]
ox = layer.output_shape[1]
oy = layer.output_shape[2]
k = layer.output_shape[3]
fx = layer.kernel_size[0]
fy = layer.kernel_size[1]
sx = layer.strides[0]
sy = layer.strides[1]
sfx = layer.dilation_rate[0]
sfy = layer.dilation_rate[1]
px = 0
py = 0
g = c
if c != k:
raise ("ERROR: C!=K")
elif isinstance(layer, keras.layers.Dense):
# fully-connected layer
c = layer.input_shape[1]
ox = 1
oy = 1
k = layer.output_shape[1]
fx = 1
fy = 1
sx = 1
sy = 1
sfx = 1
sfy = 1
px = 0
py = 0
g = 1
else:
c = layer.input_shape[3]
ox = layer.output_shape[1]
oy = layer.output_shape[2]
k = layer.output_shape[3]
fx = layer.kernel_size[0]
fy = layer.kernel_size[1]
sx = layer.strides[0]
sy = layer.strides[1]
sfx = layer.dilation_rate[0]
sfy = layer.dilation_rate[1]
px = 0
py = 0
g = 1
# Update the layer_spec variable
layer_spec.layer_info[layer_ii] = {
'B': b,
'K': k,
'C': c,
'OY': oy,
'OX': ox,
'FY': fy,
'FX': fx,
'SY': sy,
'SX': sx,
'SFY': sfy,
'SFX': sfx,
'PY': py,
'PX': px,
'G': g
}
# Add this layer number to layer_numbers
layer_numbers.append(layer_ii)
return layer_numbers