-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfcg_scripts.py
76 lines (50 loc) · 1.4 KB
/
tfcg_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""tfcg_scripts.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1gAjA8WAekyNP1NpGyf-2hPaZZs257rED
"""
import numpy as np
from sklearn import metrics
from sklearn import metrics
import numpy as np
import pandas as pd
df=pd.read_csv("tfcg_u_degree_true.csv")
df2=pd.read_csv("false_tfcg_u_degree_true.csv")
logdf=pd.read_csv("tfcg_u_logdegree_true.csv")
logdf2=pd.read_csv("false_tfcg_u_logdegree_true.csv")
df['label']=1
df2['label']=0
logdf['label']=1
logdf2['label']=0
finaldf=pd.concat([df,df2],ignore_index=True)
finallogdf=pd.concat([logdf,logdf2],ignore_index=True)
a=list(finaldf.sort_values(by=['simil']).index)
alog=list(finallogdf.sort_values(by=['simil']).index)
print(a==alog)
# y1=finaldf['simil']
# y1=np.asarray(y1)
# y1
# scores1=np.asarray(finaldf['simil'])
# scores=np.asarray(finaldf['simil'])
# logscores=np.asarray(finallogdf['simil'])
# scores
# logscores
# y=np.asarray(finaldf['label'])
# logy=np.asarray(finallogdf['label'])
# fpr, tpr, thresholds = metrics.roc_curve(y, scores,pos_label=1)
# logfpr, logtpr, logthresholds = metrics.roc_curve(logy,logscores,pos_label=1)
# fpr
# logfpr
# import matplotlib.pyplot as plt
# fpr
# fpr.shape
# plt.figure()
# y
# np.save("y.npy",y)
# np.save("logy.npy",logy)
# np.save("scores.npy",scores)
# np.save("logscores.npy",logscores)
# y
# logy
# scores