-
Notifications
You must be signed in to change notification settings - Fork 2
/
writing_linear_regression.py
41 lines (30 loc) · 1.14 KB
/
writing_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#writing linear regression from scratch
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
xs = np.array([1,2,3,4,5,6], dtype=np.float64)
ys = np.array([5,4,6,5,7,6], dtype=np.float64)
def best_fit_slope(xs,ys):
m =( ((mean(xs) * mean(ys)) - mean(xs*ys)) /
((mean(xs)* mean(xs)) - mean(xs**2)))
b = mean(ys) - (m * mean(xs))
return m, b
def squared_error(ys_orig, ys_line): #squared error is the difference btwn orig y to the linear y.
return sum((ys_line - ys_orig)**2)
def coefficient_of_determination(ys_orig,ys_line):
ys_mean_line = [mean(ys_orig) for y in ys_orig]
squared_error_regr = squared_error(ys_orig, ys_line)
squared_error_y_mean = squared_error(ys_orig, ys_mean_line)
return 1- (squared_error_regr / squared_error_y_mean)
m, b = best_fit_slope(xs,ys)
regression_line = [(m*x)+b for x in xs]
predict_x = 8
predict_y = (m*predict_x)+b
r_squared = coefficient_of_determination(ys, regression_line)
print (r_squared)
plt.scatter(xs,ys)
plt.scatter(predict_x,predict_y, color='g')
plt.plot(xs, regression_line)
plt.show()