-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·39 lines (35 loc) · 1.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.nn.functional as F
import config
def train(model, device, train_loader, optimizer, epoch):
model.train()
overall_loss = 0.0
nr_samples = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
overall_loss+=loss.item()
nr_samples+=target.size()[0]
optimizer.step()
if batch_idx % config.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.2f}%)]{}Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),"\t\t" ,overall_loss/nr_samples),flush=False,end="\r")
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))