Skip to content

Files

Latest commit

 

History

History
 
 

LangChain

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Langchain examples

The examples in this folder shows how to use LangChain with ipex-llm on Intel GPU.

1. Install ipex-llm

Follow the instructions in GPU Install Guide to install ipex-llm

2. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1

3.2 Configurations for Windows

For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Run the examples

4.1. Streaming Chat

Install dependencies:

pip install langchain==0.0.184
pip install -U pandas==2.0.3

Then execute:

python chat.py -m MODEL_PATH -q QUESTION

arguments info:

  • -m MODEL_PATH: required, path to the model
  • -q QUESTION: question to ask. Default is What is AI?.

4.2. RAG (Retrival Augmented Generation)

Install dependencies:

pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3

Then execute:

python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]

arguments info:

  • -m MODEL_PATH: required, path to the model.
  • -q QUESTION: question to ask. Default is What is IPEX?.
  • -i INPUT_PATH: path to the input doc.

4.3. Low Bit

The low_bit example (low_bit.py) showcases how to use use langchain with low_bit optimized model. By save_low_bit we save the weights of low_bit model into the target folder.

Note: save_low_bit only saves the weights of the model. Users could copy the tokenizer model into the target folder or specify tokenizer_id during initialization.

Install dependencies:

pip install langchain==0.0.184
pip install -U pandas==2.0.3

Then execute:

python low_bit.py -m <path_to_model> -t <path_to_target> [-q <your question>]

Runtime Arguments Explained:

  • -m MODEL_PATH: Required, the path to the model
  • -t TARGET_PATH: Required, the path to save the low_bit model
  • -q QUESTION: the question

4.4 vLLM

The vLLM example (vllm.py) showcases how to use langchain with ipex-llm integrated vLLM engine.

Install dependencies:

pip install "langchain<0.2"

Besides, you should also install IPEX-LLM integrated vLLM according instructions listed here

Runtime Arguments Explained:

  • -m MODEL_PATH: Required, the path to the model
  • -q QUESTION: the question
  • -t MAX_TOKENS: max tokens to generate, default 128
  • -p TENSOR_PARALLEL_SIZE: Use multiple cards for generation
  • -l LOAD_IN_LOW_BIT: Low bit format for quantization
Single card

The following command shows an example on how to execute the example using one card:

python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 1 -l sym_int4
Multi cards

To use -p TENSOR_PARALLEL_SIZE option, you will need to use our docker image: intelanalytics/ipex-llm-serving-xpu:latest. For how to use the image, try check this guide.

The following command shows an example on how to execute the example using two cards:

export CCL_WORKER_COUNT=2
export FI_PROVIDER=shm
export CCL_ATL_TRANSPORT=ofi
export CCL_ZE_IPC_EXCHANGE=sockets
export CCL_ATL_SHM=1
python ./vllm.py -m YOUR_MODEL_PATH -q "What is AI?" -t 128 -p 2 -l sym_int4