forked from jdoepfert/brukerMRI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBrukerMRI.py
406 lines (296 loc) · 12.8 KB
/
BrukerMRI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# pylint: disable-msg=C0103
"""This should at some point be a library with functions to import and
reconstruct Bruker MRI data.
2014, Joerg Doepfert
"""
import numpy as np
# ***********************************************************
# class definition
# ***********************************************************
class BrukerData:
"""Class to store and process data of a Bruker MRI Experiment"""
def __init__(self, path="", ExpNum=0, B0=9.4):
self.method = {}
self.acqp = {}
self.reco = {}
self.raw_fid = np.array([])
self.proc_data = np.array([])
self.k_data = np.array([])
self.reco_data = np.array([])
self.reco_data_norm = np.array([]) # normalized reco
self.B0 = B0 # only needed for UFZ method
self.GyroRatio = 0 # only needed for UFZ method
self.ConvFreqsFactor = 0 # reference to convert Hz <--> ppm
self.path = path
self.ExpNum = ExpNum
def GenerateKspace(self):
"""Reorder the data in raw_fid to a valid k-space."""
if self.method == {}:
raise NameError('No experiment loaded')
elif self.method["Method"] == 'jd_UFZ_RAREst':
self.k_data = self._GenKspace_UFZ_RARE()
elif (self.method["Method"] == 'FLASH' or
self.method["Method"] == 'mic_flash'):
self.k_data = self._GenKspace_FLASH()
else:
raise NameError("Unknown method")
def ReconstructKspace(self, **kwargs):
"""Transform the kspace data to image space. If it does not yet exist,
generate it from the raw fid. Keyword arguments [**kwargs] can
be supplied for some methods:
All methods:
- KspaceCutoffIdx: list lines to be set to zero in
kspace prior to FT reconstruction
jd_UFZ_RARExx:
- NEchoes: Number of Echoes to be averaged. If NEchoes="opt",
then the optimum number of echoes is calculated. If
NEchoes=0, then all echoes are averaged.
"""
# Generate k_data prior to reconstruction, if it does not yet
# exist
if self.k_data.size == 0:
self.GenerateKspace()
self._ReconstructKspace_(**kwargs)
else:
self._ReconstructKspace_(**kwargs)
return self.reco_data
def _ReconstructKspace_(self, **kwargs):
"""Select which function to use for the reco, depending on the
method."""
if self.method["Method"] == 'jd_UFZ_RAREst':
self._Reco_UFZ_RARE(**kwargs)
elif (self.method["Method"] == 'FLASH' or
self.method["Method"] == 'mic_flash'):
self. _Reco_FLASH(**kwargs)
else:
raise NameError("Unknown method")
# ***********************************************************
# method specific reordering and reco functions start here
# ***********************************************************
def _GenKspace_FLASH(self):
complexValues = self.raw_fid
NScans = (self.acqp["NI"] # no. of images
* self.acqp["NAE"] # no. of experiments
* self.acqp["NA"] # no. of averages
* self.acqp["NR"]) # no. of repetitions
Matrix = self.method["PVM_Matrix"]
kSpace = np.reshape(complexValues, (-1,Matrix[0]),
order="F")
kSpace = np.reshape(kSpace, (-1, Matrix[0], Matrix[1]))
kSpace = np.transpose(kSpace, (1,2,0))
return kSpace
def _Reco_FLASH(self, **kwargs):
k_data = self.k_data
reco_data = np.zeros(k_data.shape)
for i in range(0,self.k_data.shape[2]):
reco_data[:,:,i] = abs(fft_image(self.k_data[:,:,i]))
self.reco_data = reco_data
def _GenKspace_UFZ_RARE(self):
complexValues = self.raw_fid
complexValues = RemoveVoidEntries(complexValues,
self.acqp["ACQ_size"][0])
NEchoes = self.method["CEST_Number_Echoes"]
NPoints = self.method["CEST_Number_SatFreqs"]
NScans = self.method["PVM_NRepetitions"]
return np.reshape(complexValues, (NPoints, NEchoes, NScans),
order="F")
def _Reco_UFZ_RARE(self, **kwargs):
# use pop to set default values
KspaceCutoffIdx = kwargs.pop("KspaceCutoffIdx", [])
NEchoes = kwargs.pop("NEchoes", "opt")
NScans = self.method["PVM_NRepetitions"]
NPoints = self.method["CEST_Number_SatFreqs"]
NRecoEchoes = np.ones(NScans, dtype=np.int)
# Determine how many echoes should be averaged
if NEchoes == "opt": # calc opt num of echoes to be averaged
# choose to look at real, imag, or abs part of kspace
Data = self.k_data.real
# find the indizes of maximum kspace signal
MaxIndizes = []
MaxIndizes.append(np.argmax(Data[:, 0, 0]))
MaxIndizes.append(MaxIndizes[0] + 1
- 2*(Data[MaxIndizes[0]-1, 0, 0]
> Data[MaxIndizes[0]+1, 0, 0]))
# calc max of kspace echoes based on these indizes
MaxEchoSignals = np.sum(Data[MaxIndizes, :, :], axis=0)
# now calc opt num of echoes for each scan
for i in range(0, NScans):
NRecoEchoes[i] = CalcOptNEchoes(MaxEchoSignals[:, i])
# make sure that off and on scan have same amount of
# NRecoEchoes, i.e. echoes to be averaged
if self.method["CEST_AcqMode"] == "On_and_Off_Scan":
NRecoEchoes[1::2] = NRecoEchoes[0::2]
elif NEchoes == 0: # take all echoes
NRecoEchoes = NRecoEchoes*self.method["CEST_Number_Echoes"]
else: # take number given by user
NRecoEchoes = NRecoEchoes*NEchoes
# average the echoes
KspaceAveraged = np.zeros((NPoints, NScans), dtype=complex)
for i in range(0, NScans):
RecoEchoes = range(0, NRecoEchoes[i])
KspaceAveraged[:, i] = np.mean(
self.k_data[:, RecoEchoes, i], axis=1)
KspaceAveraged[KspaceCutoffIdx, i] = 0
# save reco as FFT of the averaged kspace data
self.reco_data, _ = FFT_center(KspaceAveraged)
# normalize the data if possible
if self.method["CEST_AcqMode"] == "On_and_Off_Scan":
self.reco_data_norm = np.divide(abs(self.reco_data[:,1::2]),
abs(self.reco_data[:,0::2]))
# ***********************************************************
# Functions
# ***********************************************************
def ReadExperiment(path, ExpNum):
"""Read in a Bruker MRI Experiment. Returns raw data, processed
data, and method and acqp parameters in a dictionary.
"""
data = BrukerData(path, ExpNum)
# parameter files
data.method = ReadParamFile(path + str(ExpNum) + "/method")
data.acqp = ReadParamFile(path + str(ExpNum) + "/acqp")
data.reco = ReadParamFile(path + str(ExpNum) + "/pdata/1/reco")
# processed data
data.proc_data = ReadProcessedData(path + str(ExpNum) + "/pdata/1/2dseq",
data.reco,
data.acqp)
# generate complex FID
raw_data = ReadRawData(path + str(ExpNum) + "/fid")
data.raw_fid = raw_data[0::2] + 1j * raw_data[1::2]
# calculate GyroRatio and ConvFreqsFactor
data.GyroRatio = data.acqp["SFO1"]*2*np.pi/data.B0*10**6 # in rad/Ts
data.ConvFreqsFactor = 1/(data.GyroRatio*data.B0/10**6/2/np.pi)
data.path = path
data.ExpNum =ExpNum
return data
def CalcOptNEchoes(s):
"""Find out how many echoes in an echo train [s] have to be
included into an averaging operation, such that the signal to
noise (SNR) of the resulting averaged signal is maximized.
Based on the formula shown in the supporting information of
the [Doepfert et al. ChemPhysChem, 15(2), 261-264, 2014]
"""
# init vars
s_sum = np.zeros(len(s))
s_sum[0] = s[0]
TestFn = np.zeros(len(s))
SNR_averaged = np.zeros(len(s)) # not needed for calculation
count = 1
for n in range(2, len(s)+1):
SNR_averaged = np.sum(s[0:n] / np.sqrt(n))
s_sum[n-1] = s[n-1] + s_sum[n-2]
TestFn[n-1] = s_sum[n-2]*(np.sqrt(float(n)/(float(n)-1))-1)
if s[n-1] < TestFn[n-1]:
break
count += 1
return count
def FFT_center(Kspace, sampling_rate=1, ax=0):
"""Calculate FFT of a time domain signal and shift the spectrum
so that the center frequency is in the center. Additionally
return the frequency axis, provided the right sampling frequency
is given.
If the data is 2D, then the FFT is performed succesively along an
axis [ax].
"""
FT = np.fft.fft(Kspace, axis=ax)
spectrum = np.fft.fftshift(FT, axes=ax)
n = FT.shape[ax]
freq_axis = np.fft.fftshift(
np.fft.fftfreq(n, 1/float(sampling_rate)))
return spectrum, freq_axis
def fft_image(Kspace):
return np.fft.fftshift(np.fft.fft2(Kspace))
def RemoveVoidEntries(datavector, acqsize0):
blocksize = int(np.ceil(float(acqsize0)/2/128)*128)
DelIdx = []
for i in range(0, len(datavector)/blocksize):
DelIdx.append(range(i * blocksize
+ acqsize0/2,
(i + 1) * blocksize))
return np.delete(datavector, DelIdx)
def ReadRawData(filepath):
with open(filepath, "r") as f:
return np.fromfile(f, dtype=np.int32)
def ReadProcessedData(filepath, reco, acqp):
with open(filepath, "r") as f:
data = np.fromfile(f, dtype=np.int16)
data = data.reshape(reco["RECO_size"][0],
reco["RECO_size"][1], -1, order="F")
if data.ndim == 3:
data_length = data.shape[2]
else:
data_length = 1
data_reshaped = np.zeros([data.shape[1], data.shape[0], data_length])
for i in range(0, data_length):
data_reshaped[:, :, i] = np.rot90(data[:, :, i])
return data_reshaped
def ReadParamFile(filepath):
"""
Read a Bruker MRI experiment's method or acqp file to a
dictionary.
"""
param_dict = {}
with open(filepath, "r") as f:
while True:
line = f.readline()
if not line:
break
# when line contains parameter
if line.startswith('##$'):
(param_name, current_line) = line[3:].split('=') # split at "="
# if current entry (current_line) is arraysize
if current_line[0:2] == "( " and current_line[-3:-1] == " )":
value = ParseArray(f, current_line)
# if current entry (current_line) is struct/list
elif current_line[0] == "(" and current_line[-3:-1] != " )":
# if neccessary read in multiple lines
while current_line[-2] != ")":
current_line = current_line[0:-1] + f.readline()
# parse the values to a list
value = [ParseSingleValue(x)
for x in current_line[1:-2].split(', ')]
# otherwise current entry must be single string or number
else:
value = ParseSingleValue(current_line)
# save parsed value to dict
param_dict[param_name] = value
return param_dict
def ParseArray(current_file, line):
# extract the arraysize and convert it to numpy
line = line[1:-2].replace(" ", "").split(",")
arraysize = np.array([int(x) for x in line])
# then extract the next line
vallist = current_file.readline().split()
# if the line was a string, then return it directly
try:
float(vallist[0])
except ValueError:
return " ".join(vallist)
# include potentially multiple lines
while len(vallist) != np.prod(arraysize):
vallist = vallist + current_file.readline().split()
# try converting to int, if error, then to float
try:
vallist = [int(x) for x in vallist]
except ValueError:
vallist = [float(x) for x in vallist]
# convert to numpy array
if len(vallist) > 1:
return np.reshape(np.array(vallist), arraysize)
# or to plain number
else:
return vallist[0]
def ParseSingleValue(val):
try: # check if int
result = int(val)
except ValueError:
try: # then check if float
result = float(val)
except ValueError:
# if not, should be string. Remove newline character.
result = val.rstrip('\n')
return result
# ***********************************************************
# -----------------------------------------------------------
# ***********************************************************
if __name__ == '__main__':
pass