-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_models.R
491 lines (327 loc) · 19.3 KB
/
linear_models.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# -------------------------------------------------------------------------------
# Linear models for CR moth paper 2 (Fisher's a as response variable)
# 13 Aug 2020
# AAR
# -------------------------------------------------------------------------------
#
# Loading libraries -------------------------------------------------------
library(vegan)
library(ggplot2)
library(lme4)
library(lmerTest)
library(glmulti)
library(MASS)
library(sjPlot)
library(arm)
library(AICcmodavg)
library(glmmTMB)
# loading data ------------------------------------------------------------
data_all <- read.csv('data_all.csv')
data_all <- as.data.frame(data_all)
# Notes -------------------------------------------------------------------
# Geometridae - gamma distribution, use glmer
# or I could transform the Geometridae data to be able to use lmer instead of glmer
# Arctiinae - normal distribution, use lmer
# non-correlated floristic variables: Vegetation Diversity, NMDS 1 and NMDS 2
# non-correlated structural variables: Understory complexity, vertical complexity and canopy cover
# -------------------------------------------------------------------------
# First, let's rescale the predictor variables, so they are all in the same scale
data_all$VegDiversity = rescale(data_all$VegDiversity)
data_all$NMDS1 = rescale(data_all$NMDS1)
data_all$NMDS2 = rescale(data_all$NMDS2)
data_all$UnderComplex = rescale(data_all$UnderComplex)
data_all$CanopyCover = rescale(data_all$CanopyCover)
data_all$VerticalComplex = rescale(data_all$VerticalComplex)
# Checking random effects -------------------------------------------------
# Moonlight
plot(data_all$G_fisher, data_all$Moonlight)
plot(data_all$A_fisher, data_all$Moonlight)
cor.test(data_all$G_fisher, data_all$Moonlight, method=c("spearman"))
cor.test(data_all$A_fisher, data_all$Moonlight, method=c("pearson"))
# Moonlight is not significantly affecting moth diversity, so it will no longer be included
# as a random effect in any of the models.
# Habitat
plot(data_all$G_fisher, as.factor(data_all$Habitat))
plot(data_all$A_fisher, as.factor(data_all$Habitat))
# Individual models (without glmulti) -------------------------------------------------------
# Floristic models ------------------------------------------------------------------------
# GEOMETRIDAE floristic models --------------------------------------------------------------
gf.null <- glmer(G_fisher ~ 1+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf.null)
gf1 <- glmer(G_fisher ~ VegDiversity+NMDS1+NMDS2+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf1)
gf2 <- glmer(G_fisher ~ VegDiversity+NMDS1+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf2)
gf3 <- glmer(G_fisher ~ VegDiversity+NMDS2+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf3)
gf4 <- glmer(G_fisher ~ NMDS1+NMDS2+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf4) # is Singular
gf5 <- glmer(G_fisher ~ VegDiversity+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf5)
gf6 <- glmer(G_fisher ~ NMDS1+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf6) # is Singular
gf7 <- glmer(G_fisher ~ NMDS2+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gf7)
# gf8 <- glmer(G_fisher ~ (VegDiversity*NMDS1*NMDS2)+(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gf8) # failed to converge
# gf9 <- glmer(G_fisher ~ (VegDiversity*NMDS1)+(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gf9)
# gf10 <- glmer(G_fisher ~ (VegDiversity*NMDS2)+(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gf10)
# gf11 <- glmer(G_fisher ~ (NMDS1*NMDS2)+(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gf11)
ggplot(data_all,aes(x=Habitat,y=G_fisher)) + geom_jitter() + geom_boxplot(alpha=0.2)
ggplot(data_all,aes(x=Moonlight,y=G_fisher)) + geom_jitter() + geom_point(alpha=0.2)
ggplot(data_all,aes(x=VegDiversity,y=G_fisher)) + geom_jitter() +
geom_point(alpha=0.2) + geom_smooth(method = "lm")
plot(gf5) # para ver los residuales?
tab_model(gf.null,gf1,gf2,gf3,gf4,gf5,gf6,gf7, show.aic = TRUE, show.aicc = TRUE, show.fstat = TRUE)
anova(gf.null,gf1,gf2,gf3,gf4,gf5,gf6,gf7)
# here is another method of comparing models: https://www.scribbr.com/statistics/akaike-information-criterion/
models <- list(gf.null,gf1,gf2,gf3,gf4,gf5,gf6,gf7)
model.names <- c("gf.null","gf1","gf2","gf3","gf4","gf5","gf6","gf7")
aictab(cand.set = models, modnames = model.names)
# According to tab_model and aictab, the model that includes (1+VegDiversity) has the
# lowest AIC, but the null model is very close with a deltaAIC<2...
# Need to compare with another method null vs gf5 (e.g. model averaging), or just mention both
# Using glmulti, the best model was (1 + NMDS1 + NMDS2)
# This method below is to compare between the best candidate models
# this is called model averaging
# https://danstich.github.io/stich/classes/BIOL678/06_modelSelection.html
# Cand.mod <- list()
# Cand.mod[[1]]<-gf3
# Cand.mod[[2]]<-gf5
#
#
# Modnames <- c("VegDiversity+NMDS2","VegDiversity")
# aictab(cand.set = Cand.mod, modnames = Modnames)
# evidence(aictab(cand.set = Cand.mod, modnames = Modnames))
#
# confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE,
# method = "raw")
#
#
# modavg(Cand.mod, "VegDiversity", modnames=Modnames, c.hat = 1, gamdisp = NULL,
# conf.level = 0.95, second.ord = TRUE, nobs = NULL,
# exclude = list("VegDiversity+NMDS2"), warn = TRUE, uncond.se = "revised",
# parm.type = NULL)
#
# modavg(Cand.mod, "NMDS2", modnames=Modnames, c.hat = 1, gamdisp = NULL,
# conf.level = 0.95, second.ord = TRUE, nobs = NULL,
# exclude = list(""), warn = TRUE, uncond.se = "revised",
# parm.type = NULL)
# From these results, it seems that NMDS2 is not significant (CI passes by 0)
# This might mean that NMDS2 should not be included at all, in which case the
# gf5 model might be the most parsimonious, which only includes VegDiversity.
# ** another option to try could be using 'model.avg'
# ARCTIINAE floristic models --------------------------------------------------------------
# Had to remove Moonlight as a random effect, because the variance was too close to cero (isSingular error)
af.null <- lmer(A_fisher ~ 1+(1|Habitat),
data = data_all, REML = FALSE); summary(af.null)
af1 <- lmer(A_fisher ~ VegDiversity+NMDS1+NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(af1) # is singular con el REML=FALSE
# af1a <- glmer(A_fisher ~ VegDiversity+NMDS1+NMDS2+(1|Habitat),
# data = data_all, family=gaussian(link = identity)); summary(af1a)
ggplot(data_all, aes(x=NMDS1, y=A_fisher)) + geom_point()
plot(af1) # para ver los residuales?
# El problema es que la palma me esta dividiendo mucho los datos
af2 <- lmer(A_fisher ~ VegDiversity+NMDS1+(1|Habitat),
data = data_all, REML = FALSE); summary(af2)
af3 <- lmer(A_fisher ~ VegDiversity+NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(af3)
af4 <- lmer(A_fisher ~ NMDS1+NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(af4) # is singular con REML = FALSE
# af4a <- lm(A_fisher ~ NMDS1+NMDS2, data = data_all); summary(af4a) # as a test, here I removed Habitat as RE and changed lmer to lm
af5 <- lmer(A_fisher ~ VegDiversity+(1|Habitat),
data = data_all, REML = FALSE); summary(af5)
af6 <- lmer(A_fisher ~ NMDS1+(1|Habitat),
data = data_all, REML = FALSE); summary(af6) # is singular
af7 <- lmer(A_fisher ~ NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(af7)
# af8 <- lmer(A_fisher ~ (VegDiversity*NMDS1*NMDS2)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(af8) # is Singular
# af9 <- lmer(A_fisher ~ (VegDiversity*NMDS1)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(af9)
# af10 <- lmer(A_fisher ~ (VegDiversity*NMDS2)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(af10) # is Singular
# af11 <- lmer(A_fisher ~ (NMDS1*NMDS2)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(af11) # is Singular
ggplot(data_all,aes(x=Habitat,y=A_fisher)) + geom_jitter() + geom_boxplot(alpha=0.2)
ggplot(data_all,aes(x=Moonlight,y=A_fisher)) + geom_jitter() + geom_point(alpha=0.2)
tab_model(af.null,af1,af2,af3,af4,af5,af6,af7, show.aic = TRUE, show.aicc = TRUE, show.fstat = TRUE)
anova(af.null,af1,af2,af3,af4,af5,af6,af7)
models <- list(af.null,af1,af2,af3,af4,af5,af6,af7)
model.names <- c("af.null","af1","af2","af3","af4","af5","af6","af7")
aictab(cand.set = models, modnames = model.names)
# According to this, the model that includes (1 + VegDiversity+NMDS1+NMDS2) has the lowest AIC
# But, there is another model that is very close (1 + VegDiversity+NMDS1). Need to check which is best.
# Using glmulti, the best model was also (1 + NMDS1)
# This method below is to compare between the best candidate models
# this is called model averaging
# https://danstich.github.io/stich/classes/BIOL678/06_modelSelection.html
Cand.mod <- list()
Cand.mod[[1]]<-af1
Cand.mod[[2]]<-af2
Modnames <- c("VegDiversity+NMDS1+NMDS2","VegDiversity+NMDS1")
aictab(cand.set = Cand.mod, modnames = Modnames)
evidence(aictab(cand.set = Cand.mod, modnames = Modnames))
confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE,
method = "raw")
modavg(Cand.mod, "VegDiversity", modnames=Modnames, c.hat = 1, gamdisp = NULL,
conf.level = 0.95, second.ord = TRUE, nobs = NULL,
exclude = list(""), warn = TRUE, uncond.se = "revised",
parm.type = NULL)
modavg(Cand.mod, "NMDS1", modnames=Modnames, c.hat = 1, gamdisp = NULL,
conf.level = 0.95, second.ord = TRUE, nobs = NULL,
exclude = list(""), warn = TRUE, uncond.se = "revised",
parm.type = NULL)
modavg(Cand.mod, "NMDS2", modnames=Modnames, c.hat = 1, gamdisp = NULL,
conf.level = 0.95, second.ord = TRUE, nobs = NULL,
exclude = list(""), warn = TRUE, uncond.se = "revised",
parm.type = NULL)
# si la varianza de Moonlight es cerca de 0 en todos los modelos de Arctiinae, tal vez puedo
# remover Moonlight de todos los modelos y justificarlo bien.
# Tal vez la Luna afecta las Arctiinae mucho menos que a las Geometridae... Revisar esto con estadistica!
# Structural model -------------------------------------------------------------------------
# GEOMETRIDAE structural models --------------------------------------------------------------
gs.null <- glmer(G_fisher ~ 1+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs.null)
gs1 <- glmer(G_fisher ~ UnderComplex + CanopyCover + VerticalComplex +(1|Habitat),
data = data_all, family=Gamma(link = log)); summary(gs1)
gs2 <- glmer(G_fisher ~ UnderComplex + CanopyCover +(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs2)
gs3 <- glmer(G_fisher ~ UnderComplex+VerticalComplex+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs3)
gs4 <- glmer(G_fisher ~ CanopyCover + VerticalComplex +(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs4)
gs5 <- glmer(G_fisher ~ UnderComplex+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs5)
gs6 <- glmer(G_fisher ~ CanopyCover+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs6)
gs7 <- glmer(G_fisher ~ VerticalComplex+(1|Habitat),
data = data_all, family=Gamma(link = inverse)); summary(gs7)
# gs8 <- glmer(G_fisher ~ (UnderComplex * CanopyCover * VerticalComplex) +(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gs8) # does not converge
# gs9 <- glmer(G_fisher ~ (UnderComplex * CanopyCover) +(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gs9) # does not converge
# gs10 <- glmer(G_fisher ~ (UnderComplex*VerticalComplex)+(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gs10)
# gs11 <- glmer(G_fisher ~ (CanopyCover*VerticalComplex) +(1|Moonlight)+(1|Habitat),
# data = data_all, family=Gamma(link = log)); summary(gs11) # does not converge
ggplot(data_all,aes(x=Habitat,y=G_fisher)) + geom_jitter() + geom_boxplot(alpha=0.2)
ggplot(data_all,aes(x=Moonlight,y=G_fisher)) + geom_jitter() + geom_point(alpha=0.2)
tab_model(gs.null,gs1,gs2,gs3,gs4,gs5,gs6,gs7, show.aic = TRUE, show.aicc = TRUE, show.fstat = TRUE)
models <- list(gs.null,gs1,gs2,gs3,gs4,gs5,gs6,gs7)
model.names <- c("gs.null","gs1","gs2","gs3","gs4","gs5","gs6","gs7")
aictab(cand.set = models, modnames = model.names)
# According to this, the null model has the lowest AIC
# There is no competing model. Does this mean that the null model is the best?
# With glmulti, the best model included (1 + UnderComplex + VerticalComplex)
# ARCTIINAE structural models --------------------------------------------------------------
# removed Moonlight as random effect
as.null <- lmer(A_fisher ~ 1+(1|Habitat),
data = data_all, REML = FALSE); summary(as.null)
as1 <- lmer(A_fisher ~ UnderComplex + CanopyCover + VerticalComplex +(1|Habitat),
data = data_all, REML = FALSE); summary(as1) # is Singular
plot(as1) # para ver los residuales?
as2 <- lmer(A_fisher ~ UnderComplex + CanopyCover+(1|Habitat),
data = data_all, REML = FALSE); summary(as2)
as3 <- lmer(A_fisher ~ UnderComplex+VerticalComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(as3)
as4 <- lmer(A_fisher ~ CanopyCover + VerticalComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(as4)
as5 <- lmer(A_fisher ~ UnderComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(as5)
as6 <- lmer(A_fisher ~ CanopyCover+(1|Habitat),
data = data_all, REML = FALSE); summary(as6)
as7 <- lmer(A_fisher ~ VerticalComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(as7)
plot(as7) # para ver los residuales?
# as8 <- lmer(A_fisher ~ (UnderComplex*CanopyCover*VerticalComplex) +(1|Moonlight)+(1|Habitat),
# data = data_all); summary(as8) # in Singular
# as9 <- lmer(A_fisher ~ (UnderComplex*CanopyCover)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(as9)
# as10 <- lmer(A_fisher ~ (UnderComplex*VerticalComplex)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(as10)
# as11 <- lmer(A_fisher ~ (CanopyCover*VerticalComplex)+(1|Moonlight)+(1|Habitat),
# data = data_all); summary(as11)
tab_model(as.null,as1,as2,as3,as4,as5,as6,as7, show.aic = TRUE, show.aicc = TRUE, show.fstat = TRUE)
anova(a.null,a1,a2,a3,a4,a5,a6,a7)
models <- list(as.null,as1,as2,as3,as4,as5,as6,as7)
model.names <- c("as.null","as1","as2","as3","as4","as5","as6","as7")
aictab(cand.set = models, modnames = model.names)
# According to this, the model that includes (1+UnderComplex + CanopyCover + VerticalComplex)
# has the lowest AIC, but there are several competing models. I need to use model averaging.
# With glmulti, the best model was (1+UnderComplex+VerticalComplex).
# This method below is to compare between the best candidate models
# this is called model averaging
# https://danstich.github.io/stich/classes/BIOL678/06_modelSelection.html
Cand.mod <- list()
Cand.mod[[1]]<-as1
Cand.mod[[2]]<-as4
Cand.mod[[3]]<-as2
Cand.mod[[4]]<-as3
Modnames <- c("UnderComplex + CanopyCover + VerticalComplex",
"CanopyCover + VerticalComplex",
"UnderComplex + CanopyCover",
"UnderComplex + VerticalComplex")
aictab(cand.set = Cand.mod, modnames = Modnames)
evidence(aictab(cand.set = Cand.mod, modnames = Modnames))
confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE,
method = "raw")
modavg(Cand.mod, "UnderComplex", modnames=Modnames, c.hat = 1, gamdisp = NULL,
conf.level = 0.95, second.ord = TRUE, nobs = NULL,
exclude = list(""), warn = TRUE, uncond.se = "revised",
parm.type = NULL)
modavg(Cand.mod, "CanopyCover", modnames=Modnames, c.hat = 1, gamdisp = NULL,
conf.level = 0.95, second.ord = TRUE, nobs = NULL,
exclude = list(""), warn = TRUE, uncond.se = "revised",
parm.type = NULL)
modavg(Cand.mod, "VerticalComplex", modnames=Modnames, c.hat = 1, gamdisp = NULL,
conf.level = 0.95, second.ord = TRUE, nobs = NULL,
exclude = list(""), warn = TRUE, uncond.se = "revised",
parm.type = NULL)
# all the variables pass by cero... None of them are significant?
# -------------------------------------------------------------------------
# Geometridae models using log transformed G_fisher. ----------------------
# (lmer instead of glmer with gamma dist)
# Floristic
gft.null <- lmer(logGfisher ~ 1+(1|Habitat),
data = data_all, REML = FALSE); summary(gft.null)
gft1 <- lmer(logGfisher ~ VegDiversity+NMDS1+NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(gft1) # is Singular
gft2 <- lmer(logGfisher ~ VegDiversity+NMDS1+(1|Habitat),
data = data_all, REML = FALSE); summary(gft2)
gft3 <- lmer(logGfisher ~ VegDiversity+NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(gft3)
gft4 <- lmer(logGfisher ~ NMDS1+NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(gft4) # is Singular
gft5 <- lmer(logGfisher ~ VegDiversity+(1|Habitat),
data = data_all, REML = FALSE); summary(gft5)
gft6 <- lmer(logGfisher ~ NMDS1+(1|Habitat),
data = data_all, REML = FALSE); summary(gft6) # is Singular
gft7 <- lmer(logGfisher ~ NMDS2+(1|Habitat),
data = data_all, REML = FALSE); summary(gft7)
tab_model(gft.null,gft1,gft2,gft3,gft4,gft5,gft6,gft7,gft8,gft9,gft10,gft11, show.aic = TRUE, show.aicc = TRUE, show.fstat = TRUE)
# According to this, the null model has the lowest AIC
# Using glmulti, the best model was (1 + NMDS1)
# Structural
gst.null <- lmer(logGfisher ~ 1+(1|Habitat),
data = data_all, REML = FALSE); summary(gst.null)
gst1 <- lmer(logGfisher ~ UnderComplex + CanopyCover + VerticalComplex +(1|Habitat),
data = data_all, REML = FALSE); summary(gst1) # is Singular
gst2 <- lmer(logGfisher ~ UnderComplex + CanopyCover+(1|Habitat),
data = data_all, REML = FALSE); summary(gst2)
gst3 <- lmer(logGfisher ~ UnderComplex+VerticalComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(gst3)
gst4 <- lmer(logGfisher ~ CanopyCover + VerticalComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(gst4) # is Singular
gst5 <- lmer(logGfisher ~ UnderComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(gst5)
gst6 <- lmer(logGfisher ~ CanopyCover+(1|Habitat),
data = data_all, REML = FALSE); summary(gst6)
gst7 <- lmer(logGfisher ~ VerticalComplex+(1|Habitat),
data = data_all, REML = FALSE); summary(gst7)
tab_model(gst.null,gst1,gst2,gst3,gst4,gst5,gst6,gst7,gst8,gst9,gst10,gst11, show.aic = TRUE, show.aicc = TRUE, show.fstat = TRUE)
# According to this, the null model has the lowest AIC
# Using glmulti, the best model was (1 + VerticalComplex)