forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
terminal.c
1361 lines (1216 loc) · 51 KB
/
terminal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2016 - 2022 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma GCC push_options
#pragma GCC optimize ("Os")
#include "ch.h"
#include "hal.h"
#include "terminal.h"
#include "mcpwm.h"
#include "mcpwm_foc.h"
#include "mc_interface.h"
#include "commands.h"
#include "hw.h"
#include "comm_can.h"
#include "utils_math.h"
#include "utils_sys.h"
#include "timeout.h"
#include "encoder/encoder.h"
#include "app.h"
#include "comm_usb.h"
#include "comm_usb_serial.h"
#include "mempools.h"
#include "crc.h"
#include "firmware_metadata.h"
#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <math.h>
// Settings
#define FAULT_VEC_LEN 25
#define CALLBACK_LEN 40
// Private types
typedef struct _terminal_callback_struct {
const char *command;
const char *help;
const char *arg_names;
void(*cbf)(int argc, const char **argv);
} terminal_callback_struct;
// Private variables
static volatile fault_data fault_vec[FAULT_VEC_LEN];
static volatile int fault_vec_write = 0;
static terminal_callback_struct callbacks[CALLBACK_LEN];
static int callback_write = 0;
void terminal_process_string(char *str) {
// Echo command so user can see what they previously ran
commands_printf("-> %s \n", str);
enum { kMaxArgs = 64 };
int argc = 0;
char *argv[kMaxArgs];
char *p2 = strtok(str, " ");
while (p2 && argc < kMaxArgs) {
argv[argc++] = p2;
p2 = strtok(0, " ");
}
if (argc == 0) {
commands_printf("No command received\n");
return;
}
// force command argument to be lowercase
for(int i = 0; argv[0][i] != '\0'; i++){
argv[0][i] = tolower(argv[0][i]);
}
for (int i = 0;i < callback_write;i++) {
if (callbacks[i].cbf != 0 && strcmp(argv[0], callbacks[i].command) == 0) {
callbacks[i].cbf(argc, (const char**)argv);
return;
}
}
if (strcmp(argv[0], "last_adc_duration") == 0) {
commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
commands_printf("Latest injected ADC duration: %.4f ms", (double)(mc_interface_get_last_inj_adc_isr_duration() * 1000.0));
commands_printf("Latest sample ADC duration: %.4f ms\n", (double)(mc_interface_get_last_sample_adc_isr_duration() * 1000.0));
} else if (strcmp(argv[0], "kv") == 0) {
commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
} else if (strcmp(argv[0], "mem") == 0) {
size_t n, size;
n = chHeapStatus(NULL, &size);
commands_printf("core free memory : %u bytes", chCoreGetStatusX());
commands_printf("heap fragments : %u", n);
commands_printf("heap free total : %u bytes\n", size);
} else if (strcmp(argv[0], "threads") == 0) {
thread_t *tp;
static const char *states[] = {CH_STATE_NAMES};
static systime_t last_check_time = 0;
commands_printf(" addr stack prio refs state name motor stackmin time ");
commands_printf("-----------------------------------------------------------------------------");
tp = chRegFirstThread();
do {
int stack_left = utils_check_min_stack_left(tp);
commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %5lu %8d %lu (%.1f %%)",
(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
states[tp->p_state], tp->p_name, tp->motor_selected, stack_left, (uint32_t)tp->p_time,
(double)(100.0 * (float)tp->p_time / (float)(chVTGetSystemTimeX() - last_check_time)));
tp->p_time = 0;
tp = chRegNextThread(tp);
} while (tp != NULL);
last_check_time = chVTGetSystemTimeX();
commands_printf(" ");
} else if (strcmp(argv[0], "fault") == 0) {
commands_printf("%s\n", mc_interface_fault_to_string(mc_interface_get_fault()));
} else if (strcmp(argv[0], "faults") == 0) {
if (fault_vec_write == 0) {
commands_printf("No faults registered since startup\n");
} else {
commands_printf("Active fault: %s\n", mc_interface_fault_to_string(mc_interface_get_fault()));
commands_printf("The following faults were registered since start:\n");
for (int i = 0;i < fault_vec_write;i++) {
commands_printf("Fault : %s", mc_interface_fault_to_string(fault_vec[i].fault));
commands_printf("Motor : %d", fault_vec[i].motor);
commands_printf("Current : %.1f", (double)fault_vec[i].current);
commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered);
commands_printf("Voltage : %.2f", (double)fault_vec[i].voltage);
#ifdef HW_HAS_GATE_DRIVER_SUPPLY_MONITOR
commands_printf("Gate drv voltage : %.2f", (double)fault_vec[i].gate_driver_voltage);
#endif
commands_printf("Duty : %.3f", (double)fault_vec[i].duty);
commands_printf("RPM : %.1f", (double)fault_vec[i].rpm);
commands_printf("Tacho : %d", fault_vec[i].tacho);
commands_printf("Cycles running : %d", fault_vec[i].cycles_running);
commands_printf("TIM duty : %d", (int)((float)fault_vec[i].tim_top * fault_vec[i].duty));
commands_printf("TIM val samp : %d", fault_vec[i].tim_val_samp);
commands_printf("TIM current samp : %d", fault_vec[i].tim_current_samp);
commands_printf("TIM top : %d", fault_vec[i].tim_top);
commands_printf("Comm step : %d", fault_vec[i].comm_step);
commands_printf("Temperature : %.2f", (double)fault_vec[i].temperature);
#ifdef HW_HAS_DRV8301
if (fault_vec[i].fault == FAULT_CODE_DRV) {
commands_printf("DRV8301_FAULTS : %s", drv8301_faults_to_string(fault_vec[i].drv8301_faults));
}
#elif defined(HW_HAS_DRV8320S)
if (fault_vec[i].fault == FAULT_CODE_DRV) {
commands_printf("DRV8320S_FAULTS : %s", drv8320s_faults_to_string(fault_vec[i].drv8301_faults));
}
#elif defined(HW_HAS_DRV8323S)
if (fault_vec[i].fault == FAULT_CODE_DRV) {
commands_printf("DRV8323S_FAULTS : %s", drv8323s_faults_to_string(fault_vec[i].drv8301_faults));
}
#endif
if (fault_vec[i].info_str != 0) {
char f_str[100];
strcpy(f_str, "Info : ");
strcpy(f_str + 19, fault_vec[i].info_str);
if (fault_vec[i].info_argn == 0) {
commands_printf(f_str);
} else if (fault_vec[i].info_argn == 1) {
commands_printf(f_str, (double)fault_vec[i].info_args[0]);
} else if (fault_vec[i].info_argn == 2) {
commands_printf(f_str, (double)fault_vec[i].info_args[0], (double)fault_vec[i].info_args[1]);
}
}
commands_printf(" ");
}
}
} else if (strcmp(argv[0], "tim") == 0) {
chSysLock();
volatile int t1_cnt = TIM1->CNT;
volatile int t8_cnt = TIM8->CNT;
volatile int t1_cnt2 = TIM1->CNT;
volatile int t2_cnt = TIM2->CNT;
volatile int dir1 = !!(TIM1->CR1 & (1 << 4));
volatile int dir8 = !!(TIM8->CR1 & (1 << 4));
chSysUnlock();
int duty1 = TIM1->CCR1;
int duty2 = TIM1->CCR2;
int duty3 = TIM1->CCR3;
int top = TIM1->ARR;
int voltage_samp = TIM8->CCR1;
int current1_samp = TIM1->CCR4;
int current2_samp = TIM8->CCR2;
commands_printf("Tim1 CNT: %i", t1_cnt);
commands_printf("Tim8 CNT: %i", t8_cnt);
commands_printf("Tim2 CNT: %i", t2_cnt);
commands_printf("Amount off CNT: %i",top - (2*t8_cnt + t1_cnt + t1_cnt2)/2);
commands_printf("Duty cycle1: %u", duty1);
commands_printf("Duty cycle2: %u", duty2);
commands_printf("Duty cycle3: %u", duty3);
commands_printf("Top: %u", top);
commands_printf("Dir1: %u", dir1);
commands_printf("Dir8: %u", dir8);
commands_printf("Voltage sample: %u", voltage_samp);
commands_printf("Current 1 sample: %u", current1_samp);
commands_printf("Current 2 sample: %u\n", current2_samp);
} else if (strcmp(argv[0], "volt") == 0) {
commands_printf("Input voltage: %.2f\n", (double)mc_interface_get_input_voltage_filtered());
#ifdef HW_HAS_GATE_DRIVER_SUPPLY_MONITOR
commands_printf("Gate driver power supply output voltage: %.2f\n", (double)GET_GATE_DRIVER_SUPPLY_VOLTAGE());
#endif
} else if (strcmp(argv[0], "param_detect") == 0) {
// Use COMM_MODE_DELAY and try to figure out the motor parameters.
if (argc == 4) {
float current = -1.0;
float min_rpm = -1.0;
float low_duty = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &min_rpm);
sscanf(argv[3], "%f", &low_duty);
commands_printf("Detecting parameters for BLDC...");
if (current > 0.0 && current < mc_interface_get_configuration()->l_current_max &&
min_rpm > 10.0 && min_rpm < 3000.0 &&
low_duty > 0.02 && low_duty < 0.8) {
float cycle_integrator;
float coupling_k;
int8_t hall_table[8];
int hall_res;
if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k, hall_table, &hall_res)) {
commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator);
commands_printf("Coupling factor: %.2f", (double)coupling_k);
if (hall_res == 0) {
commands_printf("Detected hall sensor table:");
commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
hall_table[0], hall_table[1], hall_table[2], hall_table[3],
hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
} else if (hall_res == -1) {
commands_printf("Hall sensor detection failed:");
commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
hall_table[0], hall_table[1], hall_table[2], hall_table[3],
hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
} else if (hall_res == -2) {
commands_printf("WS2811 enabled. Hall sensors cannot be used.\n");
} else if (hall_res == -3) {
commands_printf("Encoder enabled. Hall sensors cannot be used.\n");
}
} else {
commands_printf("Detection failed. Try again with different parameters.\n");
}
} else {
commands_printf("Invalid argument(s)");
if (!(current > 0.0 && current < mc_interface_get_configuration()->l_current_max)) {
commands_printf("Current must be between 0.0 and %.2f", (double)mc_interface_get_configuration()->l_current_max);
}
if (!(min_rpm > 10.0 && min_rpm < 3000.0)) {
commands_printf("ERPM must be between 10 and 3000");
}
if (!(low_duty > 0.02 && low_duty < 0.8)) {
commands_printf("Duty must be between 0.02 and 0.8");
}
commands_printf(" ");
}
} else {
commands_printf("This command requires three arguments. [current erpm duty]\n");
}
} else if (strcmp(argv[0], "rpm_dep") == 0) {
mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep();
commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit);
commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running);
commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max);
} else if (strcmp(argv[0], "foc_encoder_detect") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
mc_configuration *mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
commands_printf("Detecting encoder...");
if (current > 0.0 && current <= mcconf->l_current_max) {
if (encoder_is_configured()) {
mc_motor_type type_old = mcconf->motor_type;
mcconf->motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(mcconf);
float offset = 0.0;
float ratio = 0.0;
bool inverted = false;
mcpwm_foc_encoder_detect(current, true, &offset, &ratio, &inverted);
mcconf->motor_type = type_old;
mc_interface_set_configuration(mcconf);
commands_printf("Offset : %.2f", (double)offset);
commands_printf("Ratio : %.2f", (double)ratio);
commands_printf("Inverted : %s\n", inverted ? "true" : "false");
} else {
commands_printf("Encoder not enabled.\n");
}
} else {
commands_printf("Invalid argument(s). Current must be between 0.0 and %.2f\n", (double)mcconf->l_current_max);
}
mempools_free_mcconf(mcconf);
} else {
commands_printf("This command requires one argument. [current]\n");
}
} else if (strcmp(argv[0], "measure_res") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
mc_configuration *mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
mc_configuration *mcconf_old = mempools_alloc_mcconf();
*mcconf_old = *mc_interface_get_configuration();
commands_printf("Measuring resistance...");
if (current > 0.0 && current <= mcconf->l_current_max) {
mcconf->motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(mcconf);
float tmp_r = 0.0;
int fault = mcpwm_foc_measure_resistance(current, 2000, true, &tmp_r);
if(fault == FAULT_CODE_NONE) {
commands_printf("Resistance: %.6f ohm\n", (double)tmp_r);
} else {
commands_printf("Resistance measurement failed due to fault: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
mc_interface_set_configuration(mcconf_old);
} else {
commands_printf("Invalid argument(s). Current must be between 0.0 and %.2f\n", (double)mcconf->l_current_max);
}
mempools_free_mcconf(mcconf);
mempools_free_mcconf(mcconf_old);
} else {
commands_printf("This command requires one argument. [current]\n");
}
} else if (strcmp(argv[0], "measure_ind") == 0) {
if (argc == 2) {
float duty = -1.0;
sscanf(argv[1], "%f", &duty);
commands_printf("Measuring inductance...");
if (duty > 0.0 && duty <= 0.9) {
mc_configuration *mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
mc_configuration *mcconf_old = mempools_alloc_mcconf();
*mcconf_old = *mc_interface_get_configuration();
mcconf->motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(mcconf);
float curr, ld_lq_diff, ind;
int fault = mcpwm_foc_measure_inductance(duty, 400, &curr, &ld_lq_diff, &ind);
if(fault == FAULT_CODE_NONE) {
commands_printf("Inductance: %.2f uH, ld_lq_diff: %.2f uH (%.2f A)\n",
(double)ind, (double)ld_lq_diff, (double)curr);
} else {
commands_printf("Inductance measurement failed with fault: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
mc_interface_set_configuration(mcconf_old);
mempools_free_mcconf(mcconf);
mempools_free_mcconf(mcconf_old);
} else {
commands_printf("Invalid argument. Duty must be between 0.0 and 0.9 \n");
}
} else {
commands_printf("This command requires one argument. [duty]\n");
}
} else if (strcmp(argv[0], "measure_linkage") == 0) {
if (argc == 5) {
float current = -1.0;
float duty = -1.0;
float min_erpm = -1.0;
float res = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &duty);
sscanf(argv[3], "%f", &min_erpm);
sscanf(argv[4], "%f", &res);
commands_printf("Measuring flux linkage...");
if (current > 0.0 && current <= mc_interface_get_configuration()->l_current_max &&
min_erpm > 0.0 && duty > 0.02 && duty <= 0.9 && res >= 0.0) {
float linkage;
conf_general_measure_flux_linkage(current, duty, min_erpm, res, &linkage);
commands_printf("Flux linkage: %.7f\n", (double)linkage);
} else {
commands_printf("Invalid argument(s).");
if (!(current > 0.0 && current <= mc_interface_get_configuration()->l_current_max)) {
commands_printf("Current must be between 0.0 and %.2f", (double)mc_interface_get_configuration()->l_current_max);
}
if (!(duty > 0.02 && duty <= 0.9)) {
commands_printf("Duty must be between 0.02 and 0.9");
}
if (!(min_erpm > 0.0)) {
commands_printf("ERPM must be greater than 0.0");
}
if (!(res >= 0.0)) {
commands_printf("Resistance must be greater than 0.0");
}
commands_printf(" ");
}
} else {
commands_printf("This command requires four arguments. [current duty min_erpm resistance]\n");
}
} else if (strcmp(argv[0], "measure_res_ind") == 0) {
mc_configuration *mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
mc_configuration *mcconf_old = mempools_alloc_mcconf();
*mcconf_old = *mc_interface_get_configuration();
mcconf->motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(mcconf);
commands_printf("Measuring resistance and inductance...");
float res = 0.0;
float ind = 0.0;
float ld_lq_diff = 0.0;
int fault = mcpwm_foc_measure_res_ind(&res, &ind, &ld_lq_diff);
if (fault == FAULT_CODE_NONE) {
commands_printf("Resistance: %.6f ohm", (double)res);
commands_printf("Inductance: %.2f uH (Lq-Ld: %.2f uH)\n", (double)ind, (double)ld_lq_diff);
} else {
commands_printf("Fault occured while measuring resistance and inductance: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
mc_interface_set_configuration(mcconf_old);
mempools_free_mcconf(mcconf);
mempools_free_mcconf(mcconf_old);
} else if (strcmp(argv[0], "measure_linkage_foc") == 0) {
if (argc == 2) {
float duty = -1.0;
int fault = FAULT_CODE_NONE;
sscanf(argv[1], "%f", &duty);
commands_printf("Measuring flux linkage foc...");
if (duty > 0.0 && duty <= 0.9) {
mc_configuration *mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
mc_configuration *mcconf_old = mempools_alloc_mcconf();
*mcconf_old = *mc_interface_get_configuration();
mcconf->motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(mcconf);
// Disable timeout
systime_t tout = timeout_get_timeout_msec();
float tout_c = timeout_get_brake_current();
KILL_SW_MODE tout_ksw = timeout_get_kill_sw_mode();
timeout_reset();
timeout_configure(60000, 0.0, KILL_SW_MODE_DISABLED);
for (int i = 0;i < 100;i++) {
mc_interface_set_duty(((float)i / 100.0) * duty);
fault = mc_interface_get_fault();
if (fault != FAULT_CODE_NONE) {
break;
}
chThdSleepMilliseconds(20);
}
float vq_avg = 0.0;
float rpm_avg = 0.0;
float samples = 0.0;
float iq_avg = 0.0;
for (int i = 0;i < 1000;i++) {
vq_avg += mcpwm_foc_get_vq();
rpm_avg += mc_interface_get_rpm();
iq_avg += mc_interface_get_tot_current_directional();
samples += 1.0;
chThdSleepMilliseconds(1);
}
mc_interface_release_motor();
mc_interface_wait_for_motor_release(1.0);
mc_interface_set_configuration(mcconf_old);
mempools_free_mcconf(mcconf);
mempools_free_mcconf(mcconf_old);
// Enable timeout
timeout_configure(tout, tout_c, tout_ksw);
vq_avg /= samples;
rpm_avg /= samples;
iq_avg /= samples;
float linkage = (vq_avg - mcconf->foc_motor_r * iq_avg) / RPM2RADPS_f(rpm_avg);
if (fault == FAULT_CODE_NONE) {
commands_printf("Flux linkage: %.7f\n", (double)linkage);
} else {
commands_printf("Flux linkage detection failed with fault: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
} else {
commands_printf("Invalid argument. Duty must be between 0.0 and 0.9\n");
}
} else {
commands_printf("This command requires one argument. [duty]\n");
}
} else if (strcmp(argv[0], "measure_linkage_openloop") == 0) {
if (argc == 6) {
float current = -1.0;
float duty = -1.0;
float erpm_per_sec = -1.0;
float res = -1.0;
float ind = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &duty);
sscanf(argv[3], "%f", &erpm_per_sec);
sscanf(argv[4], "%f", &res);
sscanf(argv[5], "%f", &ind);
commands_printf("Measuring flux linkage openloop...");
if (current > 0.0 && current <= mc_interface_get_configuration()->l_current_max &&
erpm_per_sec > 0.0 && duty > 0.02 && duty <= 0.9 && res >= 0.0 && ind >= 0.0) {
float linkage = 0.0, linkage_undriven = 0.0, undriven_samples = 0.0;
bool result;
int fault = conf_general_measure_flux_linkage_openloop(current, duty, erpm_per_sec, res, ind,
&linkage, &linkage_undriven, &undriven_samples, &result);
if (fault == FAULT_CODE_NONE) {
if (result) {
commands_printf(
"Flux linkage : %.7f\n"
"Flux Linkage (undriven) : %.7f\n"
"Undriven samples : %.1f\n",
(double)linkage, (double)linkage_undriven, (double)undriven_samples);
} else {
commands_printf("Failed to measure flux linkage");
}
} else {
commands_printf("Fault occured while measuring flux linkage: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
} else {
commands_printf("Invalid argument(s).");
if (!(current > 0.0 && current <= mc_interface_get_configuration()->l_current_max)) {
commands_printf("Current must be between 0.0 and %.2f", (double)mc_interface_get_configuration()->l_current_max);
}
if (!(duty > 0.02 && duty <= 0.9)) {
commands_printf("Duty must be between 0.02 and 0.9");
}
if (!(erpm_per_sec > 0.0)) {
commands_printf("ERPM ramp rate must be greater than 0.0");
}
if (!(res >= 0.0)) {
commands_printf("Resistance must be greater than 0.0");
}
if (!(ind >= 0.0)) {
commands_printf("Inductance must be greater than 0.0");
}
commands_printf(" ");
}
} else {
commands_printf("This command requires five arguments. [current duty erpm_ramp_per_sec resistance inductance]\n");
}
} else if (strcmp(argv[0], "foc_state") == 0) {
commands_printf("FOC State:");
mcpwm_foc_print_state();
commands_printf(" ");
} else if (strcmp(argv[0], "foc_dc_cal") == 0) {
commands_printf("Performing DC offset calibration...");
int res = mcpwm_foc_dc_cal(true);
if (res >= 0) {
conf_general_store_mc_configuration((mc_configuration*)mc_interface_get_configuration(),
mc_interface_get_motor_thread() == 2);
commands_printf("Done!\n");
} else {
commands_printf("DC Cal Failed: %d\n", res);
}
} else if (strcmp(argv[0], "hw_status") == 0) {
commands_printf("Firmware: %d.%d", FW_VERSION_MAJOR, FW_VERSION_MINOR);
#ifdef HW_NAME
commands_printf("Hardware: %s", HW_NAME);
#endif
commands_printf("UUID: %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X",
STM32_UUID_8[0], STM32_UUID_8[1], STM32_UUID_8[2], STM32_UUID_8[3],
STM32_UUID_8[4], STM32_UUID_8[5], STM32_UUID_8[6], STM32_UUID_8[7],
STM32_UUID_8[8], STM32_UUID_8[9], STM32_UUID_8[10], STM32_UUID_8[11]);
commands_printf("Permanent NRF found: %s", conf_general_permanent_nrf_found ? "Yes" : "No");
#ifdef HW_HAS_PHASE_SHUNTS
commands_printf("Phase Shunts: Yes");
#else
commands_printf("Phase Shunts: No");
#endif
commands_printf("Odometer : %llu m", mc_interface_get_odometer());
commands_printf("Runtime : %llu s", g_backup.runtime);
float curr0_offset;
float curr1_offset;
float curr2_offset;
mcpwm_foc_get_current_offsets(&curr0_offset, &curr1_offset, &curr2_offset,
mc_interface_get_motor_thread() == 2);
commands_printf("FOC Current Offsets: %.2f %.2f %.2f",
(double)curr0_offset, (double)curr1_offset, (double)curr2_offset);
float v0_offset;
float v1_offset;
float v2_offset;
mcpwm_foc_get_voltage_offsets(&v0_offset, &v1_offset, &v2_offset,
mc_interface_get_motor_thread() == 2);
commands_printf("FOC Voltage Offsets: %.4f %.4f %.4f",
(double)v0_offset, (double)v1_offset, (double)v2_offset);
mcpwm_foc_get_voltage_offsets_undriven(&v0_offset, &v1_offset, &v2_offset,
mc_interface_get_motor_thread() == 2);
commands_printf("FOC Voltage Offsets Undriven: %.4f %.4f %.4f",
(double)v0_offset, (double)v1_offset, (double)v2_offset);
#ifdef COMM_USE_USB
commands_printf("USB config events: %d", comm_usb_serial_configured_cnt());
commands_printf("USB write timeouts: %u", comm_usb_get_write_timeout_cnt());
#else
commands_printf("USB not enabled on hardware.");
#endif
#if defined (V_REG) && defined (CURRENT_AMP_GAIN) && defined(CURRENT_SHUNT_RES)
commands_printf("Current Measurement Range: %.1f A", (double)((V_REG / 2.0) / (CURRENT_AMP_GAIN * CURRENT_SHUNT_RES)));
#endif
#if defined (V_REG) && defined (VIN_R1) && defined(VIN_R2)
commands_printf("Voltage Measurement Range: %.1f V", (double)((V_REG / 4095.0) * 4095.0 * ((VIN_R1 + VIN_R2) / VIN_R2)));
#endif
#ifdef HW_DEAD_TIME_NSEC
commands_printf("Dead time: %.0f ns", (double)HW_DEAD_TIME_NSEC);
#endif
commands_printf("Mempool mcconf now: %d highest: %d (max %d)",
mempools_mcconf_allocated_num(), mempools_mcconf_highest(), MEMPOOLS_MCCONF_NUM - 1);
commands_printf("Mempool appconf now: %d highest: %d (max %d)",
mempools_appconf_allocated_num(), mempools_appconf_highest(), MEMPOOLS_APPCONF_NUM - 1);
commands_printf(" ");
} else if (strcmp(argv[0], "foc_openloop") == 0) {
if (argc == 3) {
float current = -1.0;
float erpm = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &erpm);
commands_printf("Running FOC openloop...");
if (current > 0.0 && current <= mc_interface_get_configuration()->l_current_max && erpm >= 0.0) {
timeout_reset();
mc_interface_set_openloop_current(current, erpm);
int fault = mc_interface_get_fault();
if (fault != FAULT_CODE_NONE) {
commands_printf("Fault occured during openloop: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
} else {
commands_printf("Invalid argument(s).");
if (!(current > 0.0 && current <= mc_interface_get_configuration()->l_current_max)) {
commands_printf("Current must be between 0.0 and %.2f", (double)mc_interface_get_configuration()->l_current_max);
}
if (!(erpm >= 0.0)) {
commands_printf("ERPM must be greater than 0.0");
}
commands_printf(" ");
}
} else {
commands_printf("This command requires two arguments. [current erpm]\n");
}
} else if (strcmp(argv[0], "foc_openloop_duty") == 0) {
if (argc == 3) {
float duty = -1.0;
float erpm = -1.0;
sscanf(argv[1], "%f", &duty);
sscanf(argv[2], "%f", &erpm);
commands_printf("Running FOC openloop duty...");
if (duty >= 0.0 && duty <= 0.9 && erpm >= 0.0) {
timeout_reset();
mc_interface_set_openloop_duty(duty, erpm);
int fault = mc_interface_get_fault();
if (fault != FAULT_CODE_NONE) {
commands_printf("Fault occured during openloop: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
} else {
commands_printf("Invalid argument(s).");
if (!(duty >= 0.0 && duty <= 0.9)) {
commands_printf("Duty must be between 0.0 and 0.9");
}
if (!(erpm >= 0.0)) {
commands_printf("ERPM must be greater than 0.0");
}
commands_printf(" ");
}
} else {
commands_printf("This command requires two arguments. [duty erpm]\n");
}
} else if (strcmp(argv[0], "nrf_ext_set_enabled") == 0) {
if (argc == 2) {
int enabled = -1;
sscanf(argv[1], "%d", &enabled);
commands_printf("Sending COMM_EXT_NRF_SET_ENABLED...");
if (enabled >= 0) {
uint8_t buffer[2];
buffer[0] = COMM_EXT_NRF_SET_ENABLED;
buffer[1] = enabled;
commands_send_packet_nrf(buffer, 2);
commands_printf("Sent.\n");
} else {
commands_printf("Invalid argument. Enabled must be >= 0 \n");
}
} else {
commands_printf("This command requires one argument. [enabled]\n");
}
} else if (strcmp(argv[0], "foc_sensors_detect_apply") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
commands_printf("Detecting sensors for FOC...");
if (current > 0.0 && current <= mc_interface_get_configuration()->l_current_max) {
int res;
int fault = conf_general_autodetect_apply_sensors_foc(current, true, true, &res);
if (fault == FAULT_CODE_NONE) {
if (res == 0) {
commands_printf("No sensors found, using sensorless mode.\n");
} else if (res == 1) {
commands_printf("Found hall sensors, using them.\n");
} else if (res == 2) {
commands_printf("Found AS5047 encoder, using it.\n");
} else {
commands_printf("Detection error: %d\n", res);
}
} else {
commands_printf("Fault occured while detecting sensors: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
} else {
commands_printf("Invalid argument(s). Current must be between 0.0 and %.2f\n", (double)mc_interface_get_configuration()->l_current_max);
}
} else {
commands_printf("This command requires one argument. [current]\n");
}
} else if (strcmp(argv[0], "rotor_lock_openloop") == 0) {
if (argc == 4) {
float current = -1.0;
float time = -1.0;
float angle = -1.0;
int fault = FAULT_CODE_NONE;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &time);
sscanf(argv[3], "%f", &angle);
commands_printf("Locking rotor with openloop...");
if (fabsf(current) <= mc_interface_get_configuration()->l_current_max &&
angle >= 0.0 && angle <= 360.0) {
if (time <= 1e-6) {
timeout_reset();
mc_interface_set_openloop_phase(current, angle);
fault = mc_interface_get_fault();
if (fault != FAULT_CODE_NONE) {
commands_printf("Fault occured during openloop: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
return;
}
commands_printf("OK\n");
} else {
int print_div = 0;
for (float t = 0.0;t < time;t += 0.002) {
timeout_reset();
mc_interface_set_openloop_phase(current, angle);
fault = mc_interface_get_fault();
if (fault != FAULT_CODE_NONE) {
commands_printf("Fault occured during openloop: %s", mc_interface_fault_to_string(fault));
commands_printf("For more info type \"faults\" to view all logged faults\n");
return;
}
chThdSleepMilliseconds(2);
print_div++;
if (print_div >= 200) {
print_div = 0;
commands_printf("T left: %.2f s", (double)(time - t));
}
}
mc_interface_set_current(0.0);
commands_printf("Done\n");
}
} else {
commands_printf("Invalid argument(s).");
if (!(fabsf(current) <= mc_interface_get_configuration()->l_current_max)) {
commands_printf("Current must be less than %.2f", (double)mc_interface_get_configuration()->l_current_max);
}
if (!(angle >= 0.0 && angle <= 360.0)) {
commands_printf("Angle must be between 0.0 and 360.0");
}
commands_printf(" ");
}
} else {
commands_printf("This command requires three arguments. [current time angle]\n");
}
} else if (strcmp(argv[0], "foc_detect_apply_all") == 0) {
if (argc == 2) {
float max_power_loss = -1.0;
sscanf(argv[1], "%f", &max_power_loss);
commands_printf("Running detection...");
if (max_power_loss > 0.0) {
int motor_thread_old = mc_interface_get_motor_thread();
int res = conf_general_detect_apply_all_foc(max_power_loss, true, true);
commands_printf("Result: %d", res);
mc_interface_select_motor_thread(1);
if (res >= 0) {
commands_printf("Detection finished and applied. Results:");
const volatile mc_configuration *mcconf = mc_interface_get_configuration();
#ifdef HW_HAS_DUAL_MOTORS
commands_printf("\nMOTOR 1\n");
#endif
commands_printf("Motor Current : %.1f A", (double)(mcconf->l_current_max));
commands_printf("Motor R : %.2f mOhm", (double)(mcconf->foc_motor_r * 1e3));
commands_printf("Motor L : %.2f uH", (double)(mcconf->foc_motor_l * 1e6));
commands_printf("Motor Flux Linkage : %.3f mWb", (double)(mcconf->foc_motor_flux_linkage * 1e3));
commands_printf("Temp Comp : %s", mcconf->foc_temp_comp ? "true" : "false");
if (mcconf->foc_temp_comp) {
commands_printf("Temp Comp Base Temp : %.1f degC", (double)mcconf->foc_temp_comp_base_temp);
}
if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_SENSORLESS) {
commands_printf("No sensors found, using sensorless mode.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_HALL) {
commands_printf("Found hall sensors, using them.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_ENCODER) {
commands_printf("Found AS5047 encoder, using it.\n");
} else {
commands_printf("Detection error: %d\n", res);
}
#ifdef HW_HAS_DUAL_MOTORS
mc_interface_select_motor_thread(2);
mcconf = mc_interface_get_configuration();
commands_printf("\nMOTOR 2\n");
commands_printf("Motor Current : %.1f A", (double)(mcconf->l_current_max));
commands_printf("Motor R : %.2f mOhm", (double)(mcconf->foc_motor_r * 1e3));
commands_printf("Motor L : %.2f uH", (double)(mcconf->foc_motor_l * 1e6));
commands_printf("Motor Flux Linkage : %.3f mWb", (double)(mcconf->foc_motor_flux_linkage * 1e3));
commands_printf("Temp Comp : %s", mcconf->foc_temp_comp ? "true" : "false");
if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_SENSORLESS) {
commands_printf("No sensors found, using sensorless mode.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_HALL) {
commands_printf("Found hall sensors, using them.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_ENCODER) {
commands_printf("Found AS5047 encoder, using it.\n");
} else {
commands_printf("Detection error: %d\n", res);
}
#endif
} else {
if (res == -10) {
commands_printf("Could not measure flux linkage.");
} else if (res == -11) {
commands_printf("Persistent fault occurred during detection.");
} else {
commands_printf("Fault code occurred during detection: %s\n", mc_interface_fault_to_string(res+100)); // faults are offset by -100 here
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
commands_printf("Detection failed.\n");
}
mc_interface_select_motor_thread(motor_thread_old);
} else {
commands_printf("Invalid argument. Max power loss must be greater than 0\n");
}
} else {
commands_printf("This command requires one argument. [Max_power_loss]\n");
}
} else if (strcmp(argv[0], "foc_detect_apply_all_can") == 0) {
if (argc == 2) {
float max_power_loss = -1.0;
sscanf(argv[1], "%f", &max_power_loss);
commands_printf("Running detection...");
if (max_power_loss > 0.0) {
int res = conf_general_detect_apply_all_foc_can(true, max_power_loss, 0.0, 0.0, 0.0, 0.0, NULL);
commands_printf("Res: %d", res);
if (res >= 0) {
commands_printf("Detection finished and applied. Results:");
#ifdef HW_HAS_DUAL_MOTORS
commands_printf("\nMOTOR 1\n");
#endif
const volatile mc_configuration *mcconf = mc_interface_get_configuration();
commands_printf("Motor Current : %.1f A", (double)(mcconf->l_current_max));
commands_printf("Motor R : %.2f mOhm", (double)(mcconf->foc_motor_r * 1e3));
commands_printf("Motor L : %.2f microH", (double)(mcconf->foc_motor_l * 1e6));
commands_printf("Motor Flux Linkage : %.3f mWb", (double)(mcconf->foc_motor_flux_linkage * 1e3));
commands_printf("Temp Comp : %s", mcconf->foc_temp_comp ? "true" : "false");
if (mcconf->foc_temp_comp) {
commands_printf("Temp Comp Base Temp : %.1f degC", (double)mcconf->foc_temp_comp_base_temp);
}
if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_SENSORLESS) {
commands_printf("No sensors found, using sensorless mode.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_HALL) {
commands_printf("Found hall sensors, using them.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_ENCODER) {
commands_printf("Found AS5047 encoder, using it.\n");
} else {
commands_printf("Detection error: %d\n", res);
}
#ifdef HW_HAS_DUAL_MOTORS
mc_interface_select_motor_thread(2);
mcconf = mc_interface_get_configuration();
commands_printf("\nMOTOR 2\n");
commands_printf("Motor Current : %.1f A", (double)(mcconf->l_current_max));
commands_printf("Motor R : %.2f mOhm", (double)(mcconf->foc_motor_r * 1e3));
commands_printf("Motor L : %.2f microH", (double)(mcconf->foc_motor_l * 1e6));
commands_printf("Motor Flux Linkage : %.3f mWb", (double)(mcconf->foc_motor_flux_linkage * 1e3));
commands_printf("Temp Comp : %s", mcconf->foc_temp_comp ? "true" : "false");
if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_SENSORLESS) {
commands_printf("No sensors found, using sensorless mode.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_HALL) {
commands_printf("Found hall sensors, using them.\n");
} else if (mcconf->foc_sensor_mode == FOC_SENSOR_MODE_ENCODER) {
commands_printf("Found AS5047 encoder, using it.\n");
} else {
commands_printf("Detection error: %d\n", res);
}
commands_printf("\nNote that this is only printing values of motors 1");
commands_printf("and 2 of the currently connected unit, other motors");
commands_printf("may have been detected, but won't be printed here");
#endif
} else {
if (res == -10) {
commands_printf("Could not measure flux linkage.");
} else if (res == -11) {
commands_printf("Persistent fault occurred during detection.");
} else {
commands_printf("Fault code occurred during detection: %s\n", mc_interface_fault_to_string(res+100)); // faults are offset by -100 here
commands_printf("For more info type \"faults\" to view all logged faults\n");
}
commands_printf("Detection failed.\n");
}
} else {
commands_printf("Invalid argument. Max power loss must be greater than 0\n");
}
} else {
commands_printf("This command requires one argument. [Max_power_loss]\n");
}
} else if (strcmp(argv[0], "uptime") == 0) {
commands_printf("Uptime: %.2f s\n", (double)chVTGetSystemTimeX() / (double)CH_CFG_ST_FREQUENCY);
} else if (strcmp(argv[0], "hall_analyze") == 0) {
if (argc == 2) {
float current = -1.0;
int fault = FAULT_CODE_NONE;
sscanf(argv[1], "%f", ¤t);
commands_printf("Starting hall sensor analysis...\n");
if (current > 0.0 && current <= mc_interface_get_configuration()->l_current_max) {
mc_interface_lock();
mc_configuration *mcconf = mempools_alloc_mcconf();
*mcconf = *mc_interface_get_configuration();
mc_motor_type motor_type_old = mcconf->motor_type;
mcconf->motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(mcconf);
commands_init_plot("Angle", "Hall Sensor State");
commands_plot_add_graph("Hall 1");
commands_plot_add_graph("Hall 2");
commands_plot_add_graph("Hall 3");
commands_plot_add_graph("Combined");
float phase = 0.0;
for (int i = 0;i < 1000;i++) {
timeout_reset();
mc_interface_lock_override_once();
mc_interface_set_openloop_phase((float)i * current / 1000.0, phase);
fault = mc_interface_get_fault();
if (fault != FAULT_CODE_NONE) {
break;
}
chThdSleepMilliseconds(1);
}