-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_MatrixProcessing.Rmd
537 lines (450 loc) · 21.1 KB
/
01_MatrixProcessing.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
---
title: "From QC to cell type annotation: setting up the data set"
author: "Friederike Dündar, Applied Bioinformatics Core, Weill Cornell Medicine"
date: "5/3/2022; updated `r Sys.Date()`"
output:
html_document:
toc: true
toc_float: true
toc_depth: 5
code_folding: hide
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, cache=TRUE, cache.lazy = FALSE)
```
```{r libraries, cache=FALSE}
library(data.table)
library(magrittr)
library(kableExtra)
library(ggplot2); theme_set(theme_bw(base_size = 16))
library(patchwork)
```
Single-cell samples of human PBMCs that were aligned with CellRanger.
There are 3 donors and 3 treatments for each donor, i.e. 9 samples in total:
* donors: B029, 5011, 5334
* treatments:
- 1: DMS
- 3: IL15
- 4: IL15+HODHbt
We are going to read in the `.h5` files generated by CellRanger.
Details about [h5 format are here](https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices)
I used Seurat's function for reading the H5 data (see `readingH5.R`).
```{r loading_10X_output, eval=FALSE}
options(menu.graphics=FALSE)
#library(SingleCellExperiment);library(Matrix)
data_dir <- "2022-04_Dennis/data/"
source("readingH5.R")
smpls <- c("029-1","029-3","029-4","5011-1","5011-3","5011-4","5334-1","5334-3","5334-4")
smptab <- data.frame(filename=smpls,
sample=c(
paste("B029",c("DMSO","IL15","IL15HOD"), sep="_"),
paste("OM5011",c("DMSO","IL15","IL15HOD"), sep="_"),
paste("OM5334",c("DMSO","IL15","IL15HOD"), sep="_"))
)
scel <- lapply(smpls, function(x){
mysmp <- subset(smptab, filename == x)$sample
print(paste("Reading CellRanger output for", x))
retsce <- Read10X_h5_2SCE(paste0(data_dir, "JonesLab_IL15J_10Xdata/", x, "/filtered_feature_bc_matrix.h5"), mysmp)
return(retsce)
})
names(scel) <- smptab$sample
full_data <- do.call(cbind, lapply(scel, counts))
cell_info <- do.call(rbind, lapply(scel, colData))
gene_info <- rowData(scel[[1]])
## combine in one object
sce.all <- SingleCellExperiment(
list(counts = full_data),
rowData = gene_info,
colData = cell_info,
metadata = list(Samples = names(scel))
)
rm(scel); gc()
## remove completely uncovered genes
gnszero <- Matrix::rowSums(counts(sce.all)) == 0
sce.all <- sce.all[!gnszero, ]
#> dim(sce.all)
# [1] 22374 46086
## add QC info
is.mito <- grepl("mt-", ignore.case = TRUE, rowData(sce.all)$Symbol)
sce.all <- scuttle::addPerCellQC(sce.all, subsets=list(mitochondrial=is.mito))
mm <- lapply(unique(sce.all$Sample), function(x){
ss <- sce.all[, sce.all$Sample == x]$subsets_mitochondrial_percent
scuttle::isOutlier(ss, type = "higher")})
sce.all$mito.discard <- unlist(mm)
sce.all$mito.discard <- ifelse(is.na(sce.all$mito.discard), FALSE, sce.all$mito.discard)
## determine GENE count thresholds for each Sample individually
gg <- lapply(unique(sce.all$Sample), function(x){
ss <- log10(sce.all[, sce.all$Sample == x]$detected)
scuttle::isOutlier(ss)
})
sce.all$gene.discard <- unlist(gg)
## save colData
library(data.table);library(magrittr)
cd <-colData(sce.all)
cd$cell <- rownames(cd)
cd <- as.data.frame(cd) %>% as.data.table
saveRDS(cd, file = paste0("colData_unfiltered_", Sys.Date(), ".rds"))
saveRDS(sce.all, file = paste0("sce_unfiltered_", Sys.Date(), ".rds"))
```
## Finding filters
I typically do iterative rounds of filtering, starting with scuttle's outlier detection and double-checking the distributions and comparing them across samples. This is necessary because different sample types will have different types of QC characteristics, e.g. blood cells are usually fairly small and contain little RNA, which is very different when dealing, for example, with hepatocytes or other metabolically heavily active cells.
```{r include=FALSE}
data_dir = "/Users/frd2007/Documents/Projects/2019-05_BradJones/2022-04_Denis_scRNAseq/2022-05-03_ReadingIn/"
```
```{r local_data_load}
## load the colData locally for Rmd
qcall <- readRDS(paste0(data_dir, "colData_unfiltered_2022-05-03.rds"))
qcall$condition <- gsub("_.*","", qcall$Sample)
qcall$replicate <-gsub("M", "", gsub(".*_","",qcall$Sample))
```
```{r mito_discard, fig.width = 10, fig.height = 10}
for(i in unique(qcall$condition)){
dt <- qcall[condition == i]
P1 <- ggplot(dt,
aes(x = Sample, y = subsets_mitochondrial_percent, color = mito.discard)) +
ggbeeswarm::geom_quasirandom(size = .2, alpha = .3, shape = 1) +
theme(axis.text.x = element_text(angle=90, vjust=0.5, size=14)) +
scale_color_manual(values = rev(c("firebrick2","grey75"))) +
ylab("% mitochondrial genes") + coord_cartesian(ylim = c(0,20)) +
theme(legend.position = "bottom")+
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 3, shape = 19)))
P2 <- ggplot(dt,
aes(x = subsets_mitochondrial_percent, y = log10(detected),
color = mito.discard)) +
geom_point(size = .2, shape = 1 , alpha = .5) +
facet_wrap(~Sample, ncol = 2) +
scale_color_manual(values = rev(c("firebrick2","grey75"))) +
xlab("% mitochondrial genes") + ylab("log10(total number of genes)")+
theme(legend.position = "bottom")+
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 3, shape = 19)))
pw <- P1 | P2
pw <- pw + plot_annotation(title = i) + plot_layout(widths = c(1.5,3))
print(pw)
}
```
Let's check which cells are indicated to be removed based on the gene content.
Here, we show only those cells that survive the mito-filter above:
```{r gene_discard, fig.width = 10, fig.height = 10}
for(i in unique(qcall$condition)){
dt <- qcall[condition == i & mito.discard != TRUE]
ymax <- max(dt$subsets_mitochondrial_percent)
P1 <- ggplot(dt,
aes(x = Sample, y = subsets_mitochondrial_percent, color = gene.discard)) +
ggbeeswarm::geom_quasirandom(size = .2, alpha = .3, shape = 1) +
theme(axis.text.x = element_text(angle=90, vjust=0.5, size=14)) +
scale_color_manual(values = rev(c("blue","grey75"))) +
ylab("% mitochondrial genes") + coord_cartesian(ylim = c(0,ymax)) +
theme(legend.position = "bottom") +
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 3, shape = 19)))
P2 <- ggplot(dt,
aes(x = subsets_mitochondrial_percent, y = log10(detected),
color = gene.discard)) +
geom_point(size = .2, shape = 1 , alpha = .5) +
facet_wrap(~Sample, ncol = 2) +
scale_color_manual(values = rev(c("blue","grey75"))) +
xlab("% mitochondrial genes") + ylab("log10(total number of genes)")+
theme(legend.position = "bottom") +
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 3, shape = 19)))
pw <- P1 | P2
pw <- pw + plot_annotation(title = i, subtitle = "Cells that will be discarded due to the number of genes") + plot_layout(widths = c(1.5,3))
print(pw)
}
```
I think, I will disregard scuttle's gene.discard filter, and just remove those with very few genes:
* B029: <2.6
* OM511: <2.75
* OM5334: <2.75 (except OM5334-Il15HOD: <2.5
## First filtering
Will go with scuttle's outlier detection for the mito content and with the above mentioned settings for the gene content.
```r
# with scuttle's outlier detection
table(qcall$Sample, qcall$gene.discard)
FALSE TRUE
B029_DMSO 4449 374
B029_IL15 3394 145
B029_IL15HOD 4992 177
OM5011_DMSO 3191 389
OM5011_IL15 4358 236
OM5011_IL15HOD 2760 202
OM5334_DMSO 2850 335
OM5334_IL15 5490 392
OM5334_IL15HOD 12083 269
```
```{r cache=FALSE}
qcall[, min_genes := ifelse(Sample %in% c("OM5011_DMSO", "OM5011_IL15","OM5011_IL15HOD", "OM5334_DMSO","OM5334_IL15"), 2.75,
ifelse(grepl("^B029", qcall$Sample), 2.6, 2.5))]
qcall[ , gene.discard := ifelse(log10(detected) <= min_genes, TRUE, FALSE)]
qcall[, rm_cell := ifelse(mito.discard == TRUE | gene.discard == TRUE, TRUE, FALSE)]
```
```
> table(qcall$Sample, qcall$gene.discard)
FALSE TRUE
B029_DMSO 4752 71
B029_IL15 3502 37
B029_IL15HOD 5130 39
OM5011_DMSO 3391 189
OM5011_IL15 4404 190
OM5011_IL15HOD 2791 171
OM5334_DMSO 3060 125
OM5334_IL15 5586 296
OM5334_IL15HOD 12320 32
```
How many cells are going to be removed per sample?
```{r }
table(qcall$rm_cell, qcall$Sample)
```
```{r fig.width = 6, fig.height=10}
ggplot(qcall, aes(x = Sample, fill = rm_cell)) +geom_bar() + coord_flip() +
# scale_color_manual(values = c("midnightblue","dodgerblue3","dodgerblue1")) +
scale_fill_manual(values = c("grey75","orange")) +
ylab("# cells") + ggtitle("How many cells will be removed per sample?")
```
```{r fig.width = 10, fig.height = 10}
for(i in unique(qcall$condition)){
dt <- qcall[condition == i & mito.discard!=TRUE]
ymax <- max(dt$subsets_mitochondrial_percent)
P1 <- ggplot(dt,
aes(x = Sample, y = subsets_mitochondrial_percent, color = rm_cell)) +
ggbeeswarm::geom_quasirandom(size = .2, alpha = .3, shape = 1) +
theme(axis.text.x = element_text(angle=90, vjust=0.5, size=14)) +
scale_color_manual(values = rev(c("orange","grey75"))) +
ylab("% mitochondrial genes") + coord_cartesian(ylim = c(0,ymax)) +
theme(legend.position = "bottom") +
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 3, shape = 19)))
P2 <- ggplot(dt,
aes(x = subsets_mitochondrial_percent, y = log10(detected),
color = rm_cell)) +
geom_point(size = .2, shape = 1 , alpha = .5) +
facet_wrap(~Sample, ncol = 2) +
scale_color_manual(values = rev(c("orange","grey75"))) +
xlab("% mitochondrial genes") + ylab("log10(total number of genes)")+
theme(legend.position = "bottom") +
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 3, shape = 19)))
pw <- P1 | P2
pw <- pw + plot_annotation(title = i) + plot_layout(widths = c(1.5,3))
print(pw)
}
```
## Filtering II
```{r eval=F}
# save the colData to be added back to the SCE
saveRDS(qcall, file = paste0(data_dir, "colData_filtered_2022-05-03.rds"))
#$ scp colData_filtered_2022-05-03.rds frd2007@redteam2.pbtech:/scratchLocal/frd2007/2022-04_Dennis/2022-04-26_ReadingDataIn/
## on server
#sce.all = readRDS("sce_unfiltered_2022-05-03.rds")
cd <- colData(sce.all)
cd$cell = row.names(cd)
cd <- as.data.frame(cd) %>% as.data.table
qcall <- readRDS("colData_filtered_2022-05-03.rds")
qcall <- qcall[, c("Sample","Barcodes","cell","rm_cell", "min_genes")] %>% .[cd, on = c("Sample", "Barcodes","cell")]
qcall.df <- DataFrame(as.data.frame(qcall))
rownames(qcall.df) <- qcall.df$cell
colData(sce.all) <- qcall.df[colnames(sce.all),]
## remove cells
sce.all <- sce.all[, !sce.all$rm_cell]
gnszero <- Matrix::rowSums(counts(sce.all)) == 0
sce.all <- sce.all[!gnszero, ]
#> dim(sce.all)
#[1] 22266 43899
saveRDS(sce.all, file = "sce_filtered_2022-05-03.rds")
```
## Cell cycle
```{r eval=FALSE}
library(Matrix);library(scran);library(BiocParallel)
#library(SingleCellExperiment);
#sce = readRDS("sce_filtered_2022-03-25.rds")
hs.pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran"))
cc.noNormAllCells <- list()
samples = unique(sce.all$Sample)
for(i in samples){
set.seed(123)
message(i)
p = bpstart(MulticoreParam(12))
sc.tmp <- sce.all[, sce.all$Sample == i]
cc.noNorm <- scran::cyclone(sc.tmp, pairs=hs.pairs, BPPARAM=p)
names(cc.noNorm$phases) <- colnames(sc.tmp)
row.names(cc.noNorm$scores) <- colnames(sc.tmp)
row.names(cc.noNorm$normalized.scores) <- colnames(sc.tmp)
cc.noNormAllCells[[i]] <- cc.noNorm
rm(sc.tmp)
rm(cc.noNorm)
gc()
}
phs <- lapply(cc.noNormAllCells, function(x) x$phases) %>% unlist
names(phs) <- sub(".*?\\.","", names(phs))
colData(sce.all)$cc_phase <- phs[colnames(sce.all)]
g1phs <- lapply(cc.noNormAllCells, function(x) x$score$G1) %>% unlist
#names(g1phs) <- sub(".*?\\.","", names(g1phs))
colData(sce.all)$G1score <- g1phs
g2mphs <- lapply(cc.noNormAllCells, function(x) x$score$G2M) %>% unlist
colData(sce.all)$G2Mscore <- g2mphs
##!saveRDS(cc.noNormAllCells, file="cc.noNormAllCells.rds")
##!saveRDS(sce.all, file="sce_filtered_2022-05-03.rds")
```
## Integration
```{r eval=FALSE}
#rownames(sce.all) <- scater::uniquifyFeatureNames(rowData(sce.all)$ID, #rowData(sce.all)$Symbol)
source("/scratchLocal/frd2007/2022-04_Dennis/src/Mnn.R")
library(SingleCellExperiment); library(scater);library(scran);library(batchelor);library(magrittr)
## load previously filtered sample
scf <- readRDS("sce_filtered_2022-05-03.rds")
#scf <- sce.all
#rm(sce.all);gc()
## getting a list ----------------------
scel <- lapply(unique(scf$Sample), function(x){
individualize_samples(scf[, scf$Sample == x], pf = "allInteg",
shared_colData = names(colData(scf)))})
names(scel) <- unique(scf$Sample)
## MNN-correction, UMAPing, clustering --> see Mnn.R for details----------------
## First, do integration with all genes, including ery-genes:
scf.mnn <- MNN_correct(scel, hvg_n = 2500,
shared_colData = c("Sample", "Barcodes","cell"),
fn="Dennis_sampleIntegration_allGenes_2022-05-03",
cluster_ks = c(50,100,150,200,250,300),
save_hvg = TRUE, ignore_genes=NULL)
rownames(scf.mnn) <- scater::uniquifyFeatureNames(rowData(scf.mnn)$ID, rowData(scf.mnn)$Symbol)
saveRDS(scf.mnn, file = "sce_Dennis_sampleIntegration_2022-05-03.rds")
scf.mnn.nc <- scf.mnn
counts(scf.mnn.nc) <- NULL
saveRDS(scf.mnn.nc, file = "sce_Dennis_sampleIntegration_2022-05-03_noCounts.rds")
```
## SingleR
- installed `TENxPBMCData`
- followed <https://bioconductor.org/packages/devel/bioc/vignettes/ExperimentHub/inst/doc/ExperimentHub.html#default-caching-location-update> to adjust my cache location
```{r eval=FALSE}
library(celldex)
library(SingleR)
scf.mnn <-readRDS(file = "sce_Dennis_sampleIntegration_2022-05-03.rds")
rownames(scf.mnn) <- rowData(scf.mnn)$ID
hpca <- celldex::HumanPrimaryCellAtlasData(ensembl=TRUE)
## Performing predictions
predictedLabels <- SingleR(
test=scf.mnn, assay.type.test="logcounts",
ref=hpca,
labels=hpca$label.main)
##!save(predictedLabels, file = "SingleR_HPCALabels.rda")
scf.mnn$labPredict_HPCA <- predictedLabels$pruned.labels
scf.mnn$labPredict_HPCA_prePrune <- predictedLabels$labels
rownames(scf.mnn) <- scater::uniquifyFeatureNames(ID=rowData(scf.mnn)$ID, names = rowData(scf.mnn)$Symbol)
saveRDS(scf.mnn, file = "sce_Dennis_sampleIntegration_2022-05-03.rds")
scf.mnn.nc <- scf.mnn
counts(scf.mnn.nc) <- NULL
saveRDS(scf.mnn.nc, file = "sce_Dennis_sampleIntegration_2022-05-03_noCounts.rds")
```
```r
## labels assigned to our data
> table(scf.mnn$labPredict_HPCA)
B_cell CMP DC GMP
1658 49 598 10
HSC_-G-CSF Macrophage MEP Monocyte
1 273 10 2879
Neutrophils NK_cell Pre-B_cell_CD34- Pro-B_cell_CD34+
222 7935 36 4
T_cells
30091
## labels present in the reference data set
> table(hpca$label.main)
Astrocyte B_cell BM
2 26 7
BM & Prog. Chondrocytes CMP
1 8 2
DC Embryonic_stem_cells Endothelial_cells
88 17 64
Epithelial_cells Erythroblast Fibroblasts
16 8 10
Gametocytes GMP Hepatocytes
5 2 3
HSC_-G-CSF HSC_CD34+ iPS_cells
10 6 42
Keratinocytes Macrophage MEP
25 90 2
Monocyte MSC Myelocyte
60 9 2
Neuroepithelial_cell Neurons Neutrophils
1 16 21
NK_cell Osteoblasts Platelets
5 15 5
Pre-B_cell_CD34- Pro-B_cell_CD34+ Pro-Myelocyte
2 2 2
Smooth_muscle_cells T_cells Tissue_stem_cells
16 68 55
```
## SessionInfo
```
R version 4.1.2 (2021-11-01)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux Server release 6.3 (Santiago)
Matrix products: default
BLAS/LAPACK: /pbtech_mounts/homes022/frd2007/miniconda3/envs/r4_env/lib/libopenblasp-r0.3.18.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] SingleR_1.8.1 celldex_1.4.0
[3] scater_1.22.0 ggplot2_3.3.5
[5] batchelor_1.10.0 hdf5r_1.3.5
[7] magrittr_2.0.3 data.table_1.14.2
[9] BiocParallel_1.28.3 scran_1.22.1
[11] scuttle_1.4.0 SingleCellExperiment_1.16.0
[13] SummarizedExperiment_1.24.0 Biobase_2.54.0
[15] GenomicRanges_1.46.1 GenomeInfoDb_1.30.1
[17] IRanges_2.28.0 S4Vectors_0.32.4
[19] BiocGenerics_0.40.0 MatrixGenerics_1.6.0
[21] matrixStats_0.61.0 Matrix_1.4-1
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_2.0-3
[3] ellipsis_0.3.2 bluster_1.4.0
[5] XVector_0.34.0 BiocNeighbors_1.12.0
[7] ggrepel_0.9.1 bit64_4.0.5
[9] interactiveDisplayBase_1.32.0 AnnotationDbi_1.56.2
[11] fansi_1.0.3 sparseMatrixStats_1.6.0
[13] cachem_1.0.6 ResidualMatrix_1.4.0
[15] cluster_2.1.3 dbplyr_2.1.1
[17] png_0.1-7 shiny_1.7.1
[19] BiocManager_1.30.16 compiler_4.1.2
[21] httr_1.4.2 dqrng_0.3.0
[23] assertthat_0.2.1 fastmap_1.1.0
[25] limma_3.50.1 cli_3.2.0
[27] later_1.3.0 BiocSingular_1.10.0
[29] htmltools_0.5.2 tools_4.1.2
[31] rsvd_1.0.5 igraph_1.3.0
[33] gtable_0.3.0 glue_1.6.2
[35] GenomeInfoDbData_1.2.7 dplyr_1.0.8
[37] rappdirs_0.3.3 Rcpp_1.0.8.3
[39] vctrs_0.4.0 Biostrings_2.62.0
[41] ExperimentHub_2.2.1 DelayedMatrixStats_1.16.0
[43] beachmat_2.10.0 mime_0.12
[45] lifecycle_1.0.1 irlba_2.3.5
[47] statmod_1.4.36 AnnotationHub_3.2.2
[49] edgeR_3.36.0 zlibbioc_1.40.0
[51] scales_1.1.1 promises_1.2.0.1
[53] parallel_4.1.2 yaml_2.3.5
[55] curl_4.3.2 memoise_2.0.1
[57] gridExtra_2.3 RSQLite_2.2.12
[59] BiocVersion_3.14.0 ScaledMatrix_1.2.0
[61] filelock_1.0.2 rlang_1.0.2
[63] pkgconfig_2.0.3 bitops_1.0-7
[65] lattice_0.20-45 purrr_0.3.4
[67] bit_4.0.4 tidyselect_1.1.2
[69] R6_2.5.1 generics_0.1.2
[71] metapod_1.2.0 DelayedArray_0.20.0
[73] DBI_1.1.2 pillar_1.7.0
[75] withr_2.5.0 KEGGREST_1.34.0
[77] RCurl_1.98-1.6 tibble_3.1.6
[79] crayon_1.5.1 utf8_1.2.2
[81] BiocFileCache_2.2.1 viridis_0.6.2
[83] locfit_1.5-9.5 grid_4.1.2
[85] blob_1.2.2 digest_0.6.29
[87] xtable_1.8-4 httpuv_1.6.5
[89] munsell_0.5.0 beeswarm_0.4.0
[91] viridisLite_0.4.0 vipor_0.4.5
```