forked from AI-liu/Complex-YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitti.py
65 lines (42 loc) · 1.8 KB
/
kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from __future__ import division
import os
import os.path
import torch
import numpy as np
import cv2
import math
from utils import *
class KittiDataset(torch.utils.data.Dataset):
def __init__(self, root='/home/Documents/training/training/',set='train',type='velodyne_train'):
self.type = type
self.root = root
self.data_path = os.path.join(root)
self.lidar_path = os.path.join(self.data_path, "velodyne/")
self.image_path = os.path.join(self.data_path, "image_2/")
self.calib_path = os.path.join(self.data_path, "calib/")
self.label_path = os.path.join(self.data_path, "label_2/")
with open(os.path.join(self.data_path, '%s.txt' % set)) as f:
self.file_list = f.read().splitlines()
def __getitem__(self, i):
lidar_file = self.lidar_path + '/' + self.file_list[i] + '.bin'
calib_file = self.calib_path + '/' + self.file_list[i] + '.txt'
label_file = self.label_path + '/' + self.file_list[i] + '.txt'
image_file = self.image_path + '/' + self.file_list[i] + '.png'
#print(self.file_list[i])
if self.type == 'velodyne_train':
calib = load_kitti_calib(calib_file)
target = get_target2(label_file)
#print(target)
#print(self.file_list[i])
################################
# load point cloud data
a = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)
b = removePoints(a,bc)
data = makeBVFeature(b, bc ,40/512) # (512, 1024, 3)
return data , target
elif self.type == 'velodyne_test':
NotImplemented
else:
raise ValueError('the type invalid')
def __len__(self):
return len(self.file_list)