forked from AI-liu/Complex-YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregion_loss.py
283 lines (240 loc) · 12.2 KB
/
region_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from __future__ import division
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from utils import *
def build_targets(pred_boxes,pred_conf, pred_cls, target, anchors, num_anchors, num_classes, nH, nW, ignore_thres,pred_boxes_1):
# def build_targets(pred_boxes, target, anchors, num_anchors, num_classes, nH, nW, noobject_scale, object_scale, ignore_thres, pred_conf, pred_cls):
nB = target.size(0)
nTrueBox = target.data.size(1)
nA = num_anchors #5
nC = num_classes #8
anchor_step = len(anchors)/num_anchors
mask = torch.zeros(nB,nA,nH,nW)
conf_mask = torch.ones(nB, nA, nH, nW)
coord_mask = torch.zeros(nB, nA, nH, nW)
# cls_mask = torch.zeros(nB, nA, nH, nW)
tx = torch.zeros(nB, nA, nH, nW)
ty = torch.zeros(nB, nA, nH, nW)
tw = torch.zeros(nB, nA, nH, nW)
tl = torch.zeros(nB, nA, nH, nW)
tim = torch.zeros(nB, nA, nH, nW)
tre = torch.zeros(nB, nA, nH, nW)
tconf = torch.zeros(nB, nA, nH, nW)
tcls = torch.zeros(nB, nA, nH, nW , nC)
##### added #####
nAnchors = nA*nH*nW
nPixels = nH*nW
for b in range(nB):
cur_pred_boxes = pred_boxes_1[b*nAnchors:(b+1)*nAnchors].t()
cur_ious = torch.zeros(nAnchors)
for t in range(nTrueBox):
if target[b][t][1] == 0:
break
gx = target[b][t][1]*nW #nW = 32
gy = target[b][t][2]*nH #nH = 16
gw = target[b][t][3]*nW
gl = target[b][t][4]*nH
gim= target[b][t][5]
gre= target[b][t][6]
cur_gt_boxes = torch.FloatTensor([gx,gy,gw,gl]).repeat(nAnchors,1).t()
cur_ious = torch.max(cur_ious, bbox_ious(cur_pred_boxes, cur_gt_boxes, x1y1x2y2=False))
conf_mask = conf_mask.view(nB, nAnchors)
conf_mask[b][cur_ious>ignore_thres] = 0
###### added #####
conf_mask = conf_mask.view(nB, nA, nH, nW)
nGT = 0
nCorrect = 0
for b in range(nB):
for t in range(target.shape[1]):
if target[b][t].sum() == 0:
continue
nGT += 1
# Convert to position relative to box
gx = target[b, t, 1] * nW
gy = target[b, t, 2] * nH
gw = target[b, t, 3] * nW
gl = target[b, t, 4] * nH
gim = target[b][t][5]
gre = target[b][t][6]
# Get grid box indices
gi = int(gx)
gj = int(gy)
# Get shape of gt box
gt_box = torch.FloatTensor(np.array([0, 0, gw, gl])).unsqueeze(0)
# Get shape of anchor box
anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((len(anchors), 2)), np.array(anchors)), 1))
# Calculate iou between gt and anchor shapes
anch_ious = bbox_iou(gt_box, anchor_shapes)
# Where the overlap is larger than threshold set mask to zero (ignore)
conf_mask[b, anch_ious > ignore_thres, gj, gi] = 0
# Find the best matching anchor box
best_n = np.argmax(anch_ious)
# Get ground truth box
gt_box = torch.FloatTensor(np.array([gx, gy, gw, gl])).unsqueeze(0)
# Get the best prediction
pred_box = pred_boxes[b, best_n, gj, gi].unsqueeze(0)
# Masks
mask[b, best_n, gj, gi] = 1
conf_mask[b, best_n, gj, gi] = 1
# Coordinates
tx[b, best_n, gj, gi] = gx - gi
ty[b, best_n, gj, gi] = gy - gj
# Width and height
tw[b, best_n, gj, gi] = math.log(gw / anchors[best_n][0] + 1e-16)
tl[b, best_n, gj, gi] = math.log(gl / anchors[best_n][1] + 1e-16)
# tw[b][best_n][gj][gi] = np.log(gw/anchors[int(anchor_step*best_n)])
# tl[b][best_n][gj][gi] = np.log(gl/anchors[int(anchor_step*best_n+1)])
# Added #
tim[b][best_n][gj][gi]= target[b][t][5]
tre[b][best_n][gj][gi]= target[b][t][6]
# Added #
# One-hot encoding of label
target_label = int(target[b, t, 0])
tcls[b, best_n, gj, gi, target_label] = 1
tconf[b, best_n, gj, gi] = 1
# Calculate iou between ground truth and best matching prediction
iou = bbox_iou(gt_box, pred_box, x1y1x2y2=False)
pred_label = torch.argmax(pred_cls[b, best_n, gj, gi])
score = pred_conf[b, best_n, gj, gi]
if iou > 0.5 and pred_label == target_label and score > 0.5:
nCorrect += 1
return nGT, nCorrect, mask, conf_mask, tx, ty, tw, tl, tconf, tcls,tim,tre
class RegionLoss(nn.Module):
def __init__(self, num_classes=7, num_anchors=5):
super(RegionLoss, self).__init__()
self.anchors = anchors
self.num_anchors = num_anchors
self.num_classes = num_classes
self.bbox_attrs = 7+num_classes
self.ignore_thres = 0.6
self.lambda_coord = 1
self.anchor_step = int(len(anchors)/num_anchors)
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 10
self.class_scale = 1
self.mse_loss = nn.MSELoss(size_average=True) # Coordinate loss
self.bce_loss = nn.BCELoss(size_average=True) # Confidence loss
self.ce_loss = nn.CrossEntropyLoss() # Class loss
def forward(self, x, target):
#x : batch_size*num_anchorsx(6+1+num_classes)*H*W [12,75,16,32]
#targets : targets define in utils.py get_target function [12,50,7]
print(len(anchors))
nA = self.num_anchors # num_anchors = 5
nB = x.data.size(0) # batch_size
nH = x.data.size(2) # nH 16
nW = x.data.size(3) # nW 32
nC = self.num_classes
# nC = self.num_classes
# Tensors for cuda support
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor
prediction = x.view(nB, nA, self.bbox_attrs, nH, nW).permute(0, 1, 3, 4, 2).contiguous() # prediction [12,5,16,32,15]
##### Added ######
output = x
output = output.view(nB, nA, (7+nC), nH, nW)
x_1 = torch.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).view(nB, nA, nH, nW))
y_1 = torch.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).view(nB, nA, nH, nW))
w_1 = output.index_select(2, Variable(torch.cuda.LongTensor([2]))).view(nB, nA, nH, nW)
l_1 = output.index_select(2, Variable(torch.cuda.LongTensor([3]))).view(nB, nA, nH, nW)
im_1= output.index_select(2, Variable(torch.cuda.LongTensor([4]))).view(nB, nA, nH, nW)
re_1= output.index_select(2, Variable(torch.cuda.LongTensor([5]))).view(nB, nA, nH, nW)
pred_boxes_1 = torch.cuda.FloatTensor(6, nB*nA*nH*nW)
grid_x_1 = torch.linspace(0, nW-1, nW).repeat(nH,1).repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
grid_y_1 = torch.linspace(0, nH-1, nH).repeat(nW,1).t().repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
anchor_w_1 = torch.Tensor(anchors).view(nA, self.anchor_step*2).index_select(1, torch.LongTensor([0])).cuda()
anchor_l_1 = torch.Tensor(anchors).view(nA, self.anchor_step*2).index_select(1, torch.LongTensor([1])).cuda()
anchor_w_1= anchor_w_1.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
anchor_l_1= anchor_l_1.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
pred_boxes_1[0] = x_1.data.view(nB*nA*nH*nW).cuda() + grid_x_1
pred_boxes_1[1] = y_1.data.view(nB*nA*nH*nW).cuda() + grid_y_1
pred_boxes_1[2] = torch.exp(w_1.data).view(nB*nA*nH*nW).cuda() * anchor_w_1
pred_boxes_1[3] = torch.exp(l_1.data).view(nB*nA*nH*nW).cuda() * anchor_l_1
#pred_boxes[4] = np.arctan2(im,re).data.view(nB*nA*nH*nW).cuda()
pred_boxes_1[4] = im_1.data.view(nB*nA*nH*nW).cuda()
pred_boxes_1[5] = re_1.data.view(nB*nA*nH*nW).cuda()
pred_boxes_1 = convert2cpu(pred_boxes_1.transpose(0,1).contiguous().view(-1,6))
###### ---------- ########
# pred_boxes = torch.FloatTensor(4, nB*nA*nH*nW)
# Get outputs
x = torch.sigmoid(prediction[..., 0]) # Center x
y = torch.sigmoid(prediction[..., 1]) # Center y
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
## Added ##
im = prediction[..., 4]
re = prediction[..., 5]
## ----- ##
pred_conf = torch.sigmoid(prediction[..., 6]) # Conf
pred_cls = torch.softmax(prediction[..., 7:],4) # Cls pred.
# Calculate offsets for each grid
grid_x = torch.arange(nW).repeat(nH, 1).view([1, 1, nH, nW]).type(FloatTensor)
grid_y = torch.arange(nH).repeat(nW, 1).t().view([1, 1, nH, nW]).type(FloatTensor)
scaled_anchors = FloatTensor([(a_w , a_h ) for a_w, a_h in self.anchors])
anchor_w = scaled_anchors[:, 0:1].view((1, nA, 1, 1))
anchor_h = scaled_anchors[:, 1:2].view((1, nA, 1, 1))
pred_boxes = torch.FloatTensor(6, nB*nA*nH*nW)
# Add offset and scale with anchors
pred_boxes = FloatTensor(prediction[...,:4].shape)
pred_boxes[...,0] = x.data + grid_x
pred_boxes[...,1] = y.data + grid_y
pred_boxes[...,2] = torch.exp(w.data) * anchor_w
pred_boxes[...,3] = torch.exp(h.data) * anchor_h
if x.is_cuda:
# self.mse_loss = self.mse_loss.cuda()
self.bce_loss = self.bce_loss.cuda()
self.ce_loss = self.ce_loss.cuda()
nGT, nCorrect, mask, conf_mask, tx, ty, tw, th, tconf, tcls, tim, tre = build_targets(
pred_boxes=pred_boxes.cpu().data,
pred_conf=pred_conf.cpu().data,
pred_cls=pred_cls.cpu().data,
target=target.cpu().data,
anchors=scaled_anchors.cpu().data,
num_anchors=nA,
num_classes=self.num_classes,
nH=nH,
nW=nW,
ignore_thres=self.ignore_thres,
pred_boxes_1 = pred_boxes_1
# noobject_scale=self.noobject_scale,
# object_scale=self.object_scale
)
nProposals = int((pred_conf > 0.5).sum().item())
recall = float(nCorrect / nGT) if nGT else 1
precision = float(nCorrect / nProposals)
# Handle masks
mask = Variable(mask.type(ByteTensor))
conf_mask = Variable(conf_mask.type(ByteTensor))
# Handle target variables
tx = Variable(tx.type(FloatTensor), requires_grad=False)
ty = Variable(ty.type(FloatTensor), requires_grad=False)
tw = Variable(tw.type(FloatTensor), requires_grad=False)
th = Variable(th.type(FloatTensor), requires_grad=False)
tim = Variable(tim.type(FloatTensor), requires_grad=False)
tre = Variable(tre.type(FloatTensor), requires_grad=False)
tconf = Variable(tconf.type(FloatTensor), requires_grad=False)
tcls = Variable(tcls.type(LongTensor), requires_grad=False)
# Get conf mask where gt and where there is no gt
conf_mask_true = mask
conf_mask_false = conf_mask - mask
# Mask outputs to ignore non-existing objects
loss_x = self.mse_loss(x[mask], tx[mask])
loss_y = self.mse_loss(y[mask], ty[mask])
loss_w = self.mse_loss(w[mask], tw[mask])
loss_h = self.mse_loss(h[mask], th[mask])
loss_im = self.mse_loss(im[mask], tim[mask])
loss_re = self.mse_loss(re[mask], tre[mask])
loss_Euler = (loss_im + loss_re)
loss_conf = self.bce_loss(pred_conf[conf_mask_false], tconf[conf_mask_false]) + self.bce_loss(
pred_conf[conf_mask_true], tconf[conf_mask_true]
)
loss_cls = (1 / nB) * self.ce_loss(pred_cls[mask], torch.argmax(tcls[mask], 1))
loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls + loss_Euler
print('%d, %f, %f, %d, %f, %f, %f, %f, %f, %f, %f , %f' % \
(nGT, recall, precision, nProposals, loss_x.data, loss_y.data, loss_w.data, loss_h.data, loss_conf.data, loss_cls.data,loss_Euler.data,loss.data))
return loss