-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_cylinder_asym_sk.py
209 lines (152 loc) · 7.93 KB
/
test_cylinder_asym_sk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding:utf-8 -*-
# author: abhigoku10
# @file: train_cylinder_asym.py
import os
import time
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
from tqdm import tqdm
import pdb
from utils.metric_util import per_class_iu, fast_hist_crop
from dataloader.pc_dataset import get_SemKITTI_label_name,get_SemKITTI_label_color
from builder import data_builder, model_builder, loss_builder
from config.config import load_config_data
from utils.load_save_util import load_checkpoint
import warnings
warnings.filterwarnings("ignore")
def main(args):
pytorch_device = torch.device('cuda:0')
config_path = args.config_path
configs = load_config_data(config_path)
dataset_config = configs['dataset_params']
test_dataloader_config = configs['test_data_loader']
val_dataloader_config = configs['val_data_loader']
val_batch_size = val_dataloader_config['batch_size']
test_batch_size = test_dataloader_config['batch_size']
model_config = configs['model_params']
test_hypers = configs['test_params']
grid_size = model_config['output_shape']
num_class = model_config['num_class']
ignore_label = dataset_config['ignore_label']
model_load_path = test_hypers['model_load_path']
# model_save_path = test_hypers['model_save_path']
output_path=test_hypers['output_save_path']
SemKITTI_label_name = get_SemKITTI_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1]
my_model = model_builder.build(model_config)
if os.path.exists(model_load_path):
my_model = load_checkpoint(model_load_path, my_model)
my_model.to(pytorch_device)
test_dataset_loader, val_dataset_loader = data_builder.build_valtest(dataset_config,
test_dataloader_config,
val_dataloader_config,
grid_size=grid_size)
### Validation inference pipeline starts
print('#'*80)
print("Processing the validation section")
print('#'*80)
pbar = tqdm(total=len(val_dataset_loader))
print("THe length of the validation dataset : {} ".format(len(val_dataset_loader)))
my_model.eval()
hist_list = []
time_list = []
with torch.no_grad():
for i_iter_val, (_, val_vox_label, val_grid, val_pt_labs, val_pt_fea) in enumerate(
val_dataset_loader):
print("The processingframe is : {}".format(i_iter_val))
val_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in
val_pt_fea]
val_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in val_grid]
val_label_tensor = val_vox_label.type(torch.LongTensor).to(pytorch_device)
###similar to polar seg
torch.cuda.synchronize()
start_time = time.time()
predict_labels = my_model(val_pt_fea_ten, val_grid_ten, val_batch_size)
torch.cuda.synchronize()
time_list.append(time.time()-start_time)
predict_labels = torch.argmax(predict_labels, dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
for count, i_val_grid in enumerate(val_grid):
hist_list.append(fast_hist_crop(predict_labels[
count, val_grid[count][:, 0], val_grid[count][:, 1],
val_grid[count][:, 2]], val_pt_labs[count],
unique_label))
pbar.update(1)
iou = per_class_iu(sum(hist_list))
print('*'*80)
print('Validation per class iou: ')
print('*'*80)
for class_name, class_iou in zip(unique_label_str, iou):
print('%s : %.2f%%' % (class_name, class_iou * 100))
val_miou = np.nanmean(iou) * 100
del val_vox_label, val_grid, val_pt_fea, val_grid_ten
pbar.close()
print('Current val miou is %.3f ' % val_miou)
print('Inference time per %d is %.4f seconds\n' %
(val_batch_size,np.mean(time_list)))
#####Testing inference pipeline starts
pbar = tqdm(total=len(test_dataset_loader))
print('#'*80)
print("Processing the Testing pipeline")
print("The length of the test dataset is {}".format(len(test_dataset_loader)))
print('#'*80)
print(len(test_dataset_loader))
with torch.no_grad():
for i_iter_val, (_,test_vox_label,test_grid,test_pt_labs,test_pt_fea,test_index,filename) in enumerate(test_dataset_loader):
# print(" THe enumuerated values test_grid:{} test_pt_feat:{} test_index:{}".format(test_grid,test_pt_fea,test_index))
test_label_tensor = test_vox_label.type(torch.LongTensor).to(pytorch_device)
test_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in
test_pt_fea]
test_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in test_grid]
predict_labels = my_model(test_pt_fea_ten, test_grid_ten,test_batch_size)
predict_labels = torch.argmax(predict_labels, dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
# write to label file
for count,i_test_grid in enumerate(test_grid):
test_pred_label = predict_labels[count,test_grid[count][:,0],test_grid[count][:,1],test_grid[count][:,2]]
test_pred_label = np.expand_dims(test_pred_label,axis=1)
# print(" The test labels befor conversion {}".format(max(test_pred_label, dim=1)))
# save_dir = test_dataset_loader.im_idx[test_index[count]]
_,dir2 = filename[0].split('/sequences/',1)
new_save_dir = output_path + '/sequences/' +dir2.replace('velodyne','predictions')[:-3]+'label'
if not os.path.exists(os.path.dirname(new_save_dir)):
try:
os.makedirs(os.path.dirname(new_save_dir))
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
test_pred_label=get_SemKITTI_label_color(dataset_config["label_mapping"],test_pred_label)
test_pred_label = test_pred_label.astype(np.uint32)
# print(" The test labels after conversion {}".format(max(test_pred_label, dim=1)))
test_pred_label.tofile(new_save_dir)
##### To check the predicted results
for count, i_test_grid in enumerate(test_grid):
hist_list.append(fast_hist_crop(predict_labels[
count, test_grid[count][:, 0], test_grid[count][:, 1],
test_grid[count][:, 2]], test_pt_labs[count],
unique_label))
pbar.update(1)
iou = per_class_iu(sum(hist_list))
print('*'*80)
print('Testing per class iou: ')
print('*'*80)
for class_name, class_iou in zip(unique_label_str, iou):
print('%s : %.2f%%' % (class_name, class_iou * 100))
test_miou = np.nanmean(iou) * 100
print('Current test miou is %.3f ' % test_miou)
print('Inference time per %d is %.4f seconds\n' %
(test_batch_size,np.mean(time_list)))
del test_vox_label, test_grid, test_pt_fea, test_grid_ten,test_index
pbar.close()
if __name__ == '__main__':
# Testing settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('-y', '--config_path', default='config/semantickitti.yaml')
args = parser.parse_args()
print(' '.join(sys.argv))
print(args)
main(args)