-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_cylinder_custom_sk.py
158 lines (115 loc) · 6.05 KB
/
test_cylinder_custom_sk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding:utf-8 -*-
# author: abhigoku10
# @file: train_cylinder_asym.py
import os
import time
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
from tqdm import tqdm
import pdb
from utils.metric_util import per_class_iu, fast_hist_crop
from dataloader.pc_dataset import get_SemKITTI_label_name,get_SemKITTI_label_color
from builder import data_builder, model_builder, loss_builder
from config.config import load_config_data
from utils.load_save_util import load_checkpoint
import warnings
warnings.filterwarnings("ignore")
def main(args):
pytorch_device = torch.device('cuda:0')
config_path = args.config_path
configs = load_config_data(config_path)
dataset_config = configs['dataset_params']
test_dataloader_config = configs['test_data_loader']
val_dataloader_config = configs['val_data_loader']
val_batch_size = val_dataloader_config['batch_size']
test_batch_size = test_dataloader_config['batch_size']
model_config = configs['model_params']
test_hypers = configs['test_params']
grid_size = model_config['output_shape']
num_class = model_config['num_class']
ignore_label = dataset_config['ignore_label']
model_load_path = test_hypers['model_load_path']
# model_save_path = test_hypers['model_save_path']
output_path=test_hypers['output_save_path']
SemKITTI_label_name = get_SemKITTI_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1]
my_model = model_builder.build(model_config)
if os.path.exists(model_load_path):
my_model = load_checkpoint(model_load_path, my_model)
my_model.to(pytorch_device)
test_dataset_loader, val_dataset_loader = data_builder.build_valtest(dataset_config,
test_dataloader_config,
val_dataloader_config,
grid_size=grid_size)
hist_list = []
time_list = []
#####Testing inference
pbar = tqdm(total=len(test_dataset_loader))
print('#'*60)
print("Processing the Testing pipeline")
print("The length of the test dataset is {}".format(len(test_dataset_loader)))
print('#'*60)
print(len(test_dataset_loader))
with torch.no_grad():
print("Inside torch nograd function")
for i_iter_val, (_,test_vox_label,test_grid,test_pt_labs,test_pt_fea,test_index,filename) in enumerate(test_dataset_loader):
print("Inside for loop function")
print(" THe enumuerated values test_grid:{} test_pt_feat:{} test_index:{}".format(test_grid,test_pt_fea,test_index))
test_label_tensor = test_vox_label.type(torch.LongTensor).to(pytorch_device)
test_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in
test_pt_fea]
test_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in test_grid]
print("Passing the data into the trained model")
predict_labels = my_model(test_pt_fea_ten, test_grid_ten,test_batch_size)
predict_labels = torch.argmax(predict_labels, dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
# write to label file
for count,i_test_grid in enumerate(test_grid):
test_pred_label = predict_labels[count,test_grid[count][:,0],test_grid[count][:,1],test_grid[count][:,2]]
test_pred_label = np.expand_dims(test_pred_label,axis=1)
# print(" The test labels befor conversion {}".format(max(test_pred_label, dim=1)))
# save_dir = test_dataset_loader.im_idx[test_index[count]]
_,dir2 = filename[0].split('/sequences/',1)
new_save_dir = output_path + '/sequences/' +dir2.replace('velodyne','predictions')[:-3]+'label'
if not os.path.exists(os.path.dirname(new_save_dir)):
try:
os.makedirs(os.path.dirname(new_save_dir))
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
test_pred_label=get_SemKITTI_label_color(dataset_config["label_mapping"],test_pred_label)
test_pred_label = test_pred_label.astype(np.uint32)
# print(" The test labels after conversion {}".format(max(test_pred_label, dim=1)))
test_pred_label.tofile(new_save_dir)
# ##### To check the predicted results
# for count, i_test_grid in enumerate(test_grid):
# hist_list.append(fast_hist_crop(predict_labels[
# count, test_grid[count][:, 0], test_grid[count][:, 1],
# test_grid[count][:, 2]], test_pt_labs[count],
# unique_label))
pbar.update(1)
# iou = per_class_iu(sum(hist_list))
# print('*'*80)
# print('Testing per class iou: ')
# print('*'*80)
# for class_name, class_iou in zip(unique_label_str, iou):
# print('%s : %.2f%%' % (class_name, class_iou * 100))
# test_miou = np.nanmean(iou) * 100
# print('Current test miou is %.3f ' % test_miou)
print('Exiting the for loop function')
print('Inference time per %d is %.4f seconds\n' % (test_batch_size,np.mean(time_list)))
del test_vox_label, test_grid, test_pt_fea, test_grid_ten,test_index
print('Exiting the test functino')
pbar.close()
if __name__ == '__main__':
# Testing settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('-y', '--config_path', default='config/semantickitti.yaml')
args = parser.parse_args()
print(' '.join(sys.argv))
print(args)
main(args)