diff --git a/assets/index-CkCBXymj.js b/assets/index-BAJtVHJ3.js similarity index 99% rename from assets/index-CkCBXymj.js rename to assets/index-BAJtVHJ3.js index 6a53d02..5eb2c0d 100644 --- a/assets/index-CkCBXymj.js +++ b/assets/index-BAJtVHJ3.js @@ -805,4 +805,4 @@ D = [[-0.25 2.75 ] if show: p.show() return -`,[n,r]=w.useState("");return w.useEffect(()=>{fetch("https://raw.githubusercontent.com/abhiphile/GSoC-2024-SymPy-Final-Report/refs/heads/main/README.md").then(i=>i.text()).then(i=>r(i)).catch(i=>console.error("Error fetching README:",i))},[]),v.jsxs(v.Fragment,{children:[v.jsx(dr,{}),v.jsxs("div",{className:"row",children:[v.jsx("div",{className:"col-md-2 col-xs-12",children:v.jsx(fr,{})}),v.jsx("div",{className:"col m-2",children:v.jsx("div",{className:"m-2 border rounded p-4",children:v.jsxs(Ht,{children:[v.jsx($c,{children:"Week 15: Added Nichols plot to control [Last Week]"}),v.jsxs(C3,{className:"par",children:["Due to recent travel and commitments related to college placements, I was unable to complete all the expected work within the given timeframe. After discussing this with my mentor, he suggested that I request an extension. I also feel that an extension would allow me to complete the remaining work without added stress, so I would like to request a 4-week extension to ensure I can deliver quality results.",v.jsx(An,{}),"This week, I focused on developing a Python function to generate Nichols plot for continuous-time Single-Input Single-Output (SISO) Linear Time-Invariant (LTI) systems. A Nichols Chart is a graphical representation used to analyze and design feedback control systems by depicting stability and frequency responses. The chart works by transforming complex frequency responses into a simpler gain phase plane, making it easier to analyze system behavior.",v.jsx("br",{}),"The ",v.jsx("code",{children:"nichols_plot"})," function I developed takes a transfer function and generates the plot over a specified frequency range.",v.jsx("br",{}),"One of the challenges I encountered was ensuring that the function could handle a wide range of systems and accurately plot the frequency response. By using the plot_parametric function, I was able to plot phase and magnitude plot easily. Below is my implemented code.",v.jsx(An,{}),v.jsx("code",{children:"nichols_plot_expr"}),v.jsx("pre",{children:e}),v.jsx("code",{children:"nichols_plot"}),v.jsx("pre",{children:t}),v.jsx($c,{level:3,children:"Nichols plot Example"}),v.jsxs("div",{className:"container overflow-hidden font-italic text-center align-items-center justify-content-center flex-column",children:[v.jsx(Ao,{src:"https://github-production-user-asset-6210df.s3.amazonaws.com/140839576/367624983-e494972c-4dc6-4685-9a78-01cb157bd5ca.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240924%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240924T104752Z&X-Amz-Expires=300&X-Amz-Signature=d7d8ecda9c6c94cd76fcc6c3491e202e3ecca8859e8b57d5d87e9d72d90eee8e&X-Amz-SignedHeaders=host",height:500,width:550,className:"text-center flex-column d-flex justify-content-center"}),v.jsx("div",{className:"font-italic text-center",children:"Fig - Nichols plot of 1.5 / (s^2 + 14s + 40.02) "})]})]}),v.jsx($c,{level:1,children:"The Final Report"}),v.jsx("div",{className:"border rounded p-3 m-2 text-md border-success",children:v.jsx(dF,{children:n})}),v.jsx($c,{children:"Pull Requests"}),v.jsxs(C3,{className:"par",children:[v.jsxs("a",{href:"https://github.com/sympy/sympy/pull/27067",className:"text-success",children:[v.jsx(Hr,{})," (Open) Added nichols_plot to control plots."]}),v.jsx("div",{className:"gap-3",children:v.jsx(An,{})}),"Abhishek Kumar",v.jsx("br",{}),"GSoC Contributor"]})]})})}),v.jsx(pr,{})]})]})},mF=OC([{path:"/gsoc24-blog/",element:v.jsx(yA,{})},{path:"/gsoc24-blog/contact",element:v.jsx(xA,{})},{path:"/gsoc24-blog/resume",element:v.jsx(SA,{})},{path:"/gsoc24-blog/about",element:v.jsx(CA,{})},{path:"/gsoc24-blog/week1",element:v.jsx(EA,{})},{path:"/gsoc24-blog/week2",element:v.jsx(TA,{})},{path:"/gsoc24-blog/week3",element:v.jsx(MA,{})},{path:"/gsoc24-blog/week4",element:v.jsx(NA,{})},{path:"/gsoc24-blog/week5",element:v.jsx(AA,{})},{path:"/gsoc24-blog/week6",element:v.jsx(jA,{})},{path:"/gsoc24-blog/week7",element:v.jsx(zA,{})},{path:"/gsoc24-blog/week9",element:v.jsx(_A,{})},{path:"/gsoc24-blog/week10",element:v.jsx(LA,{})},{path:"/gsoc24-blog/week11-12",element:v.jsx(FA,{})},{path:"/gsoc24-blog/week15",element:v.jsx(hF,{})}]);Hh.createRoot(document.getElementById("root")).render(v.jsx(De.StrictMode,{children:v.jsx($C,{router:mF})})); +`,[n,r]=w.useState("");return w.useEffect(()=>{fetch("https://raw.githubusercontent.com/abhiphile/GSoC-2024-SymPy-Final-Report/refs/heads/main/README.md").then(i=>i.text()).then(i=>r(i)).catch(i=>console.error("Error fetching README:",i))},[]),v.jsxs(v.Fragment,{children:[v.jsx(dr,{}),v.jsxs("div",{className:"row",children:[v.jsx("div",{className:"col-md-2 col-xs-12",children:v.jsx(fr,{})}),v.jsx("div",{className:"col m-2",children:v.jsx("div",{className:"m-2 border rounded p-4",children:v.jsxs(Ht,{children:[v.jsx($c,{children:"Week 15: Added Nichols plot to control [Last Week]"}),v.jsxs(C3,{className:"par",children:["Due to recent travel and commitments related to college placements, I was unable to complete all the expected work within the given timeframe. After discussing this with my mentor, he suggested that I request an extension. I also feel that an extension would allow me to complete the remaining work without added stress, so I would like to request a 4-week extension to ensure I can deliver quality results.",v.jsx(An,{}),"This week, I focused on developing a Python function to generate Nichols plot for continuous-time Single-Input Single-Output (SISO) Linear Time-Invariant (LTI) systems. A Nichols Chart is a graphical representation used to analyze and design feedback control systems by depicting stability and frequency responses. The chart works by transforming complex frequency responses into a simpler gain phase plane, making it easier to analyze system behavior.",v.jsx("br",{}),"The ",v.jsx("code",{children:"nichols_plot"})," function I developed takes a transfer function and generates the plot over a specified frequency range.",v.jsx("br",{}),"One of the challenges I encountered was ensuring that the function could handle a wide range of systems and accurately plot the frequency response. By using the plot_parametric function, I was able to plot phase and magnitude plot easily. Below is my implemented code.",v.jsx(An,{}),v.jsx("code",{children:"nichols_plot_expr"}),v.jsx("pre",{children:e}),v.jsx("code",{children:"nichols_plot"}),v.jsx("pre",{children:t}),v.jsx($c,{level:3,children:"Nichols plot Example"}),v.jsxs("div",{className:"container overflow-hidden font-italic text-center align-items-center justify-content-center flex-column",children:[v.jsx(Ao,{src:"https://github-production-user-asset-6210df.s3.amazonaws.com/140839576/367624983-e494972c-4dc6-4685-9a78-01cb157bd5ca.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240924%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240924T104752Z&X-Amz-Expires=300&X-Amz-Signature=d7d8ecda9c6c94cd76fcc6c3491e202e3ecca8859e8b57d5d87e9d72d90eee8e&X-Amz-SignedHeaders=host",height:500,width:550,className:"text-center flex-column d-flex justify-content-center"}),v.jsx("div",{className:"font-italic text-center",children:"Fig - Nichols plot of 1.5 / (s^2 + 14s + 40.02) "})]})]}),v.jsx($c,{level:1,children:"The Final Report"}),v.jsx("div",{className:"border rounded p-3 m-2 text-md border-success",children:v.jsx(dF,{children:n})}),v.jsx($c,{children:"Pull Requests"}),v.jsxs(C3,{className:"par",children:[v.jsxs("a",{href:"/nichols.png",className:"text-success",children:[v.jsx(Hr,{})," (Open) Added nichols_plot to control plots."]}),v.jsx("div",{className:"gap-3",children:v.jsx(An,{})}),"Abhishek Kumar",v.jsx("br",{}),"GSoC Contributor"]})]})})}),v.jsx(pr,{})]})]})},mF=OC([{path:"/gsoc24-blog/",element:v.jsx(yA,{})},{path:"/gsoc24-blog/contact",element:v.jsx(xA,{})},{path:"/gsoc24-blog/resume",element:v.jsx(SA,{})},{path:"/gsoc24-blog/about",element:v.jsx(CA,{})},{path:"/gsoc24-blog/week1",element:v.jsx(EA,{})},{path:"/gsoc24-blog/week2",element:v.jsx(TA,{})},{path:"/gsoc24-blog/week3",element:v.jsx(MA,{})},{path:"/gsoc24-blog/week4",element:v.jsx(NA,{})},{path:"/gsoc24-blog/week5",element:v.jsx(AA,{})},{path:"/gsoc24-blog/week6",element:v.jsx(jA,{})},{path:"/gsoc24-blog/week7",element:v.jsx(zA,{})},{path:"/gsoc24-blog/week9",element:v.jsx(_A,{})},{path:"/gsoc24-blog/week10",element:v.jsx(LA,{})},{path:"/gsoc24-blog/week11-12",element:v.jsx(FA,{})},{path:"/gsoc24-blog/week15",element:v.jsx(hF,{})}]);Hh.createRoot(document.getElementById("root")).render(v.jsx(De.StrictMode,{children:v.jsx($C,{router:mF})})); diff --git a/index.html b/index.html index aa51fed..4517147 100644 --- a/index.html +++ b/index.html @@ -7,7 +7,7 @@ GSoC 24 Blog | Abhishek Kumar - + diff --git a/nichols.png b/nichols.png new file mode 100644 index 0000000..f27c451 Binary files /dev/null and b/nichols.png differ