Skip to content

Latest commit

 

History

History
67 lines (53 loc) · 1.72 KB

README.md

File metadata and controls

67 lines (53 loc) · 1.72 KB

Deskew

Skew detection and correction in images containing text

Image with skew

Image after deskew

Cli usage

Get the skew angle:

deskew input.png

Deskew an image:

deskew --output output.png input.png

Lib usage

scikit-image:

from skimage import io
from skimage.transform import rotate
from skimage.color import rgb2gray
from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))

OpenCV:

from typing import Tuple
import numpy as np
import cv2
from deskew import determine_skew

def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)

Inspired by Alyn: https://github.com/kakul/Alyn