-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathASC.py
executable file
·1538 lines (1349 loc) · 47.9 KB
/
ASC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python3.8
# -*- coding: utf-8 -*-
"""Absorption spectrum calculator (ASC) based on correlation technique."""
import sys
import os
import string
import math
from queue import SimpleQueue as squ
import random
from random import random as rnd
import csv
import multiprocessing as mp
import datetime
from typing import Any, List, Dict, Tuple, Union
from packaging.version import parse as verp
import requests
import numpy
import matplotlib.pyplot as plt # type: ignore
import hapi # type: ignore
__version__ = '0.15'
MINIMAL_HAPI_VERSION = '1.2.2.0'
PROGRAM_NAME = 'Absorption spectrum calculator (ASC) based on correlation technique'
NCT = List[Tuple[float, float]]
SPP = Dict[int, NCT]
# GLOBAL_TABLE_NAME: str = 'H20'
GLOBAL_PRESSURE: float = 1
MULTIPLE_TEMPERATURE: bool = True
PRINT_HISTORY: bool = False
main_queue: mp.Queue = mp.Queue()
err_que: mp.Queue = mp.Queue()
pqu: squ = squ()
time_per_100_iteration: Union[float, None] = None
result_list: List[Any] = []
error_list: List[Any] = []
class HAPI_FETCH_OBJECT:
"""_summary_
"""
def __init__(self, tableName: str = None, molNumber: int = None, isID: int = None, vnmin: float = None,
vnmax: float = None):
self.tableName = tableName
self.molNumber = molNumber
self.isID = isID
self.vnmin = vnmin
self.vnmax = vnmax
GLOBAL_FETCH_OBJECT: HAPI_FETCH_OBJECT = HAPI_FETCH_OBJECT()
def blockPrint():
"""_summary_
"""
sys.stdout = open(os.devnull, 'w', encoding="utf-8")
def enablePrint():
"""_summary_
"""
sys.stdout = sys.__stdout__
def log_result(result: Any) -> None:
"""_summary_
Args:
result (Any): _description_
"""
result_list.append(result)
def log_error(result: Any) -> None:
"""_summary_
Args:
result (Any): _description_
"""
error_list.append(result)
class HAPI_SPEC_REQ:
"""_summary_
"""
def __init__(self, press: float, temp: float, vnmin: float, vnmax: float):
self.press = press
self.temp = temp
self.vnmin = vnmin
self.vnmax = vnmax
def getspec(sp: HAPI_SPEC_REQ) -> NCT:
"""_summary_
Args:
obj (HAPI_FETCH_OBJECT): _description_
sp (HAPI_SPEC_REQ): _description_
Returns:
NCT: _description_
"""
res: List[Tuple[float, float]] = []
blockPrint()
nu, coef = hapi.absorptionCoefficient_Voigt(SourceTables=GLOBAL_FETCH_OBJECT.tableName,
Environment={'p': sp.press,
'T': sp.temp},
WavenumberRange=[sp.vnmin,
sp.vnmax],
HITRAN_units=False)
enablePrint()
for i, nuf in enumerate(nu):
res.append((nuf, coef[i]))
return res
def getspecs(tmin: float, tmax: float, dt: float,
vmin: float, vmax: float) -> SPP:
"""_summary_
Args:
obj (HAPI_FETCH_OBJECT): _description_
tmin (float): _description_
tmax (float): _description_
dt (float): _description_
vmin (float): _description_
vmax (float): _description_
Returns:
SPP: _description_
"""
print('Sumilating specs')
ct = tmin
res = {}
while ct <= tmax:
res[round(ct)] = getspec(HAPI_SPEC_REQ(GLOBAL_PRESSURE, ct, vmin, vmax))
ct = ct + dt
return res
def gsNCT(sp: NCT, ind: int) -> List[float]:
"""_summary_
Args:
sp (NCT): _description_
ind (int): _description_
Returns:
List[float]: _description_
"""
res: List[float] = []
for i in sp:
res.append(i[ind])
return res
def intr(sp: NCT, vmin: float, vmax: float, ln: int) -> Tuple[List[float], List[float]]:
"""_summary_
Args:
sp (NCT): _description_
vmin (float): _description_
vmax (float): _description_
ln (int): _description_
Returns:
Tuple[List[float], List[float]]: _description_
"""
mini = min(sp, key=lambda x: abs(x[0]-vmin))
bg = sp.index(mini)
maxi = min(sp, key=lambda x: abs(x[0]-vmax))
nd = sp.index(maxi)
setst = sp[bg:nd]
dx = (vmax-vmin)/ln
res: List[float] = []
x = vmin
xar: List[float] = []
for i in range(ln):
res.append(numpy.interp(x, gsNCT(setst, 0), gsNCT(setst, 1)))
xar.append(x)
x += dx+0*i
return (res, xar)
def intrnl(sp: NCT, center: Tuple[float, int], nlp: Tuple[float, float, float, int], ln: int) -> Tuple[List[float], List[float]]:
"""_summary_
Args:
sp (NCT): _description_
center (Tuple[float, int]): _description_
nlp (Tuple[float, float, float, int]): _description_
ln (int): _description_
Returns:
Tuple[List[float], List[float]]: _description_
"""
xar = [i*(nlp[0]) + nlp[1]*math.exp((i-nlp[3])*nlp[2]) for i in range(ln)]
xar.sort(reverse=True)
mn = xar[center[1]]
mpn = [xar[i] - mn for i in range(len(xar))]
if mpn[center[1]] != 0:
stin = 'intrnl error: center have not properly position\n'
stin += 'Center: ' + \
"{:.6f}".format(center[0]) + '(' + str(center[1]) + ')\n'
stin += 'But have ' + str(mpn.index(0.0))
log_error(stin)
asd = [center[0] - mpn[i] for i in range(len(mpn))]
res: List[float] = []
for i, vn in enumerate(asd):
res.append(numpy.interp(vn, gsNCT(sp, 0), gsNCT(sp, 1)))
return (res, asd)
def normspec(sp: List[float]) -> List[float]:
"""_summary_
Args:
sp (List[float]): _description_
Returns:
List[float]: _description_
"""
el = min(sp)
inte = sum(sp[i]-el for i in range(len(sp)))
res: List[float] = []
for i, nuf in enumerate(sp):
res.append((nuf-el)/inte)
return res
def flm(spec: List[float], num: int = 5) -> List[int]:
"""_summary_
Args:
spec (List[float]): _description_
num (int, optional): _description_. Defaults to 5.
Returns:
List[int]: _description_
"""
res: List[int] = []
for i in range(len(spec)-num):
mpa: List[float] = spec[i: i+num]
# print('mpa: ', mpa)
mx = mpa[round(num/2)]
# print('mx: ', mx)
fl = True
for nl, val in enumerate(mpa):
if nl != round(num/2):
if mx < val:
fl = False
if fl:
res.append(i+round(num/2))
# print('appended ', i, ' ', i+round(num/2))
return res
class multitemp_obj():
"""docstring for multitemp_obj."""
cf: float = None
# hpt: int = None
# tmplist: List[Tuple[int, float]] = None
# vn: float = None
# dvn: float = None
# ln: int = None
center: Tuple[float, int] = None
centered: bool = False
nlp: Tuple[float, float, float, int] = None
non_linear: bool = False
# xar: List[float] = None
# maxs: List[Tuple[int, float]] = None
# comment: List[str] = None
def __init__(self, tmplist: List[Tuple[int, float]], vn: float, dvn: float, cf: float, hpt: int, ln: int, center: Tuple[float, int] = None,
nlp: Tuple[float, float, float, int] = None):
self.tmplist = tmplist
self.vn = vn
self.dvn = dvn
self.ln = ln
self.cf = cf
self.center = center
self.hpt = hpt
if center is not None:
self.centered = True
self.nlp = nlp
if nlp is not None:
self.non_linear = True
else:
self.non_linear = False
(spew, xarr) = self.get_spec(ln)
self.xar = xarr
mxs = flm(spew, 5)
self.maxes = [(i, xarr[i]) for i in mxs]
self.commentr: str = None
self.name: str = None
def add_name(self, name: str) -> None:
"""_summary_
Args:
name (str): _description_
"""
if self.name is None:
self.name = name
else:
self.name += '->' + name
def get_name(self) -> str:
"""_summary_
Returns:
str: _description_
"""
if self.name is None:
return 'Unnamed'
return self.name
def appendc(self, stt: str) -> None:
"""_summary_
Args:
stt (str): _description_
"""
if self.commentr is None:
self.commentr = stt
else:
self.commentr += '->' + stt
def sort(self) -> Union[float, None]:
"""_summary_
Returns:
Union[float, None]: _description_
"""
return self.cf
def printe(self, fil=None) -> None:
"""_summary_
Args:
fil (_type_, optional): _description_. Defaults to None.
"""
stin = '------\n'
stin += self.get_name() + '\n'
stin += "{:.3f}".format(self.vn) + ', ' + \
"{:.2f}".format(self.dvn) + ', ' + "{:1.6f}".format(self.cf)
if self.center is not None:
stin += ', centering: ' + \
"{:.3f}".format(self.center[0]) + \
'(' + str(self.center[1]) + ')'
stin += '\n'
for (temper, coef) in self.tmplist:
if temper == self.hpt:
stin += '|--' + str(temper) + 'K: ' + \
"{:0.2f}".format(coef) + '\n'
else:
stin += '|' + str(temper) + 'K: ' + \
"{:0.2f}".format(coef) + '\n'
if self.non_linear:
stin += '|GD: ' + "{:1.6f}".format(self.nlp[0]) + '(' + "{:1.6f}".format(100*self.nlp[0]*self.ln/self.dvn) \
+ '%), DD: ' + "{:1.6f}".format(self.nlp[1]) + '' + '\n'
stin += '|xspar: ' + \
"{:1.3f}".format(self.nlp[2]) + \
', xpos: ' + str(self.nlp[3]) + '\n'
stin += self.commentr + '\n'
stin += '---'
if fil is None:
print(stin)
else:
print(stin, file=fil)
def add_nlp(self, nlp: Tuple[float, float, float, int]) -> None:
"""_summary_
Args:
nlp (Tuple[float, float, float, int]): _description_
"""
self.nlp = nlp
self.non_linear = True
def get_raw_mspec(self) -> List[Tuple[float, float]]:
"""_summary_
Returns:
List[Tuple[float, float]]: _description_
"""
doubspec: List[List[float]] = []
for i, (temper, coef) in enumerate(self.tmplist):
hs = HAPI_SPEC_REQ(GLOBAL_PRESSURE, temper, self.vn-0.5, self.vn+self.dvn+0.5)
tms = getspec(hs)
if i == 0:
for j, (nu, absc) in enumerate(tms):
doubspec.append([nu, absc*coef])
else:
for j, (nu, absc) in enumerate(tms):
doubspec[j][1] += absc*coef
gsp: List[Tuple[float, float]] = []
for i, (nu, absc) in enumerate(doubspec):
gsp.append((nu, absc))
return gsp
# def get_raw_mspec_div(self) -> Dict[int, Tuple[float, List[Tuple[float, float]]]]:
# doubspec: Dict[int, Tuple[float, List[Tuple[float, float]]]] = []
# for i, (temper, coef) in enumerate(self.tmplist):
# hf = HAPI_FETCH_OBJECT(GLOBAL_TABLE_NAME, 1, 1, self.vn-1, self.vn+self.dvn+1)
# hs = HAPI_SPEC_REQ(1, temper, self.vn-0.5, self.vn+self.dvn+0.5)
# tms = getspec(hf, hs)
# gs: List[Tuple[float, float]] = []
# for j, (nu, absc) in enumerate(tms):
# gs.append((nu, absc*coef))
# doubspec[temper] = (coef, gs)
# return doubspec
def get_spec(self, ln: int) -> Tuple[List[float], List[float]]:
"""_summary_
Args:
ln (int): _description_
Returns:
Tuple[List[float], List[float]]: _description_
"""
if self.non_linear:
sp = intrnl(self.get_raw_mspec(), self.center, self.nlp, ln)
else:
sp = intr(self.get_raw_mspec(), self.vn, self.vn + self.dvn, ln)
return sp
# def get_spec_div(self, ln: int) -> Dict[int, Tuple[float, Tuple[List[float], List[float]]]]:
# dicc = self.get_raw_mspec_div()
# newdc: Dict[int, Tuple[float, Tuple[List[float], List[float]]]] = {}
# for key, (cffi, yar) in dicc.items():
# if self.non_linear:
# sp = intrnl(yar, self.center, self.nlp, ln)
# newdc[key] = (cffi, sp)
# else:
# sp = intr(yar, self.vn, self.vn + self.dvn, ln)
# newdc[key] = (cffi, sp)
# return newdc
def get_raw_mspec_wo(self) -> List[Tuple[float, float]]:
"""_summary_
Returns:
List[Tuple[float, float]]: _description_
"""
doubspec: List[List[float]] = []
for (temper, coef) in self.tmplist:
if temper != self.hpt:
hs = HAPI_SPEC_REQ(GLOBAL_PRESSURE, temper, self.vn-0.5,
self.vn+self.dvn+0.5)
tms = getspec(hs)
if len(doubspec) == 0:
for j, (nu, absc) in enumerate(tms):
doubspec.append([nu, absc*coef])
else:
for j, (nu, absc) in enumerate(tms):
doubspec[j][1] += absc*coef
gsp: List[Tuple[float, float]] = []
for (nu, absc) in doubspec:
gsp.append((nu, absc))
return gsp
def get_spec_wo(self, ln: int) -> Tuple[List[float], List[float]]:
"""_summary_
Args:
ln (int): _description_
Returns:
Tuple[List[float], List[float]]: _description_
"""
if len(self.tmplist) > 1:
if self.non_linear:
sp = intrnl(self.get_raw_mspec_wo(), self.center, self.nlp, ln)
else:
sp = intr(self.get_raw_mspec_wo(),
self.vn, self.vn + self.dvn, ln)
else:
return ([0.0 for i in range(ln)], self.xar)
return sp
def check(self) -> Tuple[bool, str]:
"""_summary_
Returns:
Tuple[bool, str]: _description_
"""
stin = '-------------------------------------\n'
stin += 'Object check error: '
stin += self.get_name()
stin += '\n'
fl = False
for (num, vnm) in self.maxes:
if vnm - self.vn > self.dvn:
fl = True
stin += 'Max position error: ' + "{:1.6f}".format(vnm) + '(' + str(num) + \
') is bigger than WN range: ' + "{:1.6f}".format(self.vn) + '+-' + "{:1.6f}".format(self.dvn) + '\n'
if (self.center is not None) and (not self.centered):
stin += 'Center parameter was set, but flag centered is False\n'
if (self.center is None) and (self.centered):
stin += 'Centered flag is True, but center parameter is None\n'
if self.centered:
if self.center[0] - self.vn > self.dvn:
fl = True
stin += 'Center error: ' + \
"{:1.6f}".format(self.center[0]) + '(' + str(self.center[1]) + ') is bigger than WN range: ' + \
"{:1.6f}".format(self.vn) + '+-' + "{:1.6f}".format(self.dvn) + '\n'
if (self.nlp is not None) and (not self.non_linear):
stin += 'Non linear parameters were set, but flag non_linear is False\n'
if (self.nlp is None) and (self.non_linear):
stin += 'Flag non_linear is True, but non linear parameters are None\n'
return (fl, stin)
def update(self) -> None:
"""_summary_
"""
(spew, xarr) = self.get_spec(self.ln)
self.xar = xarr
if self.non_linear:
self.vn = xarr[0]
self.dvn = xarr[len(xarr)-1] - self.vn
mxs = flm(spew, 5)
self.maxes = [(i, xarr[i]) for i in mxs]
(fl, stin) = self.check()
if fl:
log_error(stin)
def bmtfa(obj: multitemp_obj) -> multitemp_obj:
"""_summary_
Args:
obj (multitemp_obj): _description_
Returns:
multitemp_obj: _description_
"""
nte = multitemp_obj(obj.tmplist, obj.vn, obj.dvn, obj.cf,
obj.hpt, obj.ln, obj.center, obj.nlp)
nte.commentr = obj.commentr
nte.name = obj.name
nte.update()
return nte
class mp_q_mess_obj():
"""mp_q_mess_obj docs."""
def __init__(self, temp: multitemp_obj, spec: List[float]):
self.temp = temp
self.spec = spec
class history_obj():
"""docstring for history_obj."""
listB: List[multitemp_obj] = []
def __init__(self, listA: List[multitemp_obj] = None):
if listA is None:
self.listB = []
def append(self, temp: multitemp_obj) -> None:
"""_summary_
Args:
temp (multitemp_obj): _description_
"""
self.listB.append(temp)
def outprint(self) -> None:
"""_summary_
"""
print('###HISTORY###')
for obj in self.listB:
obj.printe()
print('###END###')
def printProgressBar(iteration, total, prefix='', suffix='', decimals=1,
length=100, fill='█', printEnd="\r") -> None:
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
printEnd - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
percent = ("{0:." + str(decimals) + "f}").format(100 *
(iteration / float(total)))
filledLength = int(length * iteration // total)
barx = fill * filledLength + '-' * (length - filledLength)
if time_per_100_iteration is not None:
suffix += ' ETA: ' + str(datetime.timedelta(seconds=round(time_per_100_iteration*(total-iteration)/100)))
print(f'\r{prefix} |{barx}| {percent}% {suffix}', end=printEnd)
if iteration == total:
print()
def simpleresiduals(sp1: List[float], sp2: List[float]) -> float:
"""_summary_
Args:
sp1 (List[float]): _description_
sp2 (List[float]): _description_
Returns:
float: _description_
"""
if len(sp1) == len(sp2):
res = sum((sp1[i] - sp2[i])**2 for i in range(len(sp1)))
res = math.sqrt(res/len(sp1))
else:
print('Lengths not equal')
return None
return res
def fl2nl(fn: str) -> List[List[float]]:
"""_summary_
Args:
fn (str): _description_
Returns:
List[List[float]]: _description_
"""
with open(fn, 'r', encoding="utf-8") as fl:
reader = csv.reader(fl)
res = []
for row in reader:
res2 = []
for i in row[0:]:
res2.append(float(i))
res.append(res2)
return res
def randomstr(size: int = 6, chars=string.ascii_letters + string.digits) -> str:
"""_summary_
Args:
size (int, optional): _description_. Defaults to 6.
chars (_type_, optional): _description_. Defaults to string.ascii_letters+string.digits.
Returns:
str: _description_
"""
return ''.join(random.choice(chars) for _ in range(size))
def initi() -> None:
"""_summary_
Args:
obj (HAPI_FETCH_OBJECT): _description_
Raises:
exception: _description_
"""
print('Initializing')
url = "http://hitran.org"
timeout = 5
try:
requests.get(url, timeout=timeout)
except (requests.ConnectionError, requests.Timeout):
print('---No internet connection---\n')
hapi.db_begin('wolframdb')
fl = False
for tb in hapi.tableList():
if tb == GLOBAL_FETCH_OBJECT.tableName:
fl = True
if fl:
nu1 = hapi.getColumn(GLOBAL_FETCH_OBJECT.tableName, 'nu')
if not nu1[0] <= GLOBAL_FETCH_OBJECT.vnmin and nu1[len(nu1) - 1] >= GLOBAL_FETCH_OBJECT.vnmax:
print('Fetching data')
blockPrint()
hapi.fetch(GLOBAL_FETCH_OBJECT.tableName, GLOBAL_FETCH_OBJECT.molNumber,
GLOBAL_FETCH_OBJECT.isID, GLOBAL_FETCH_OBJECT.vnmin, GLOBAL_FETCH_OBJECT.vnmax)
enablePrint()
else:
print('Using existing data')
else:
print('Fetching data')
blockPrint()
hapi.fetch(GLOBAL_FETCH_OBJECT.tableName, GLOBAL_FETCH_OBJECT.molNumber,
GLOBAL_FETCH_OBJECT.isID, GLOBAL_FETCH_OBJECT.vnmin, GLOBAL_FETCH_OBJECT.vnmax)
enablePrint()
def retrn(sp: List[float]) -> List[float]:
"""_summary_
Args:
sp (List[float]): _description_
Returns:
List[float]: _description_
"""
res1 = []
ln = len(sp)
for i in range(ln):
res1.append(sp[ln-i-1])
return res1
def corr(expspecq: List[float], speccs: SPP, vmin: float, vmax: float) -> multitemp_obj:
"""_summary_
Args:
expspecq (List[float]): _description_
speccs (SPP): _description_
vmin (float): _description_
vmax (float): _description_
Returns:
multitemp_obj: _description_
"""
tstart = datetime.datetime.timestamp(datetime.datetime.now())
cnt = 0
res: List[Tuple[int, float, float, float]] = []
dlset = normspec(expspecq)
dv = 0.05
d3v = 0.05
ddv = 0.5
tc = round(len(speccs)*(1-ddv)*(vmax-vmin)/(dv*d3v))
printProgressBar(0, tc, prefix='Progress:', suffix='Complete', length=50)
while ddv <= 1:
v = vmin
while v <= vmax-ddv:
for key in speccs.keys():
hitset = normspec(intr(speccs[key], v, v+ddv, len(dlset))[0])
cf = simpleresiduals(dlset, hitset)
res.append((key, v, ddv, cf))
cnt += 1
printProgressBar(cnt + 1, tc, prefix='Progress:',
suffix='Complete', length=50)
v += dv
ddv += d3v
tendt = datetime.datetime.timestamp(datetime.datetime.now())
global time_per_100_iteration
time_per_100_iteration = (tendt - tstart)/(cnt/100)
if cnt != tc:
print()
res.sort(key=lambda x: x[3])
temp = res[0]
mlt = multitemp_obj([(temp[0], 1)], temp[1], temp[2],
temp[3], temp[0], len(dlset))
mlt.appendc('F3P(T,vn,Dvn)')
return mlt
def centerspec(exps: List[float], temp: multitemp_obj) -> multitemp_obj:
"""_summary_
Args:
exps (List[float]): _description_
temp (multitemp_obj): _description_
Returns:
multitemp_obj: _description_
"""
simsp = temp.get_spec(len(exps))[0]
simn = simsp.index(max(simsp))
expn = exps.index(max(exps))
center = temp.vn + temp.dvn*(simn)/len(exps)
nte = bmtfa(temp)
nte.vn = temp.vn + temp.dvn*(simn-expn)/len(exps)
nte.center = (center, expn)
simsp = nte.get_spec(len(exps))[0]
simsp = normspec(simsp)
expw = normspec(exps)
cf = simpleresiduals(expw, simsp)
nte.cf = cf
nte.appendc('Centered')
return nte
def corrt(expspecq: List[float], speccs: SPP, mlt: multitemp_obj) -> multitemp_obj:
"""_summary_
Args:
expspecq (List[float]): _description_
speccs (SPP): _description_
mlt (multitemp_obj): _description_
Returns:
multitemp_obj: _description_
"""
dlset = normspec(expspecq)
cnt = 0
res: List[Tuple[int, float]] = []
tc = len(speccs)
printProgressBar(0, tc, prefix='Progress:', suffix='Complete', length=50)
key: int = 0
tcoe: float = 0.0
tlistm: List[Tuple[int, float]] = []
for (temper, tcoeff) in mlt.tmplist:
if temper == mlt.hpt:
tcoe = tcoeff
else:
tlistm.append((temper, tcoeff))
for key in speccs:
mltset = mlt.get_spec_wo(len(dlset))[0]
if mlt.non_linear:
hitset = intrnl(speccs[key], mlt.center, mlt.nlp, len(dlset))[0]
else:
hitset = intr(speccs[key], mlt.vn, mlt.vn + mlt.dvn, len(dlset))[0]
for i, mv in enumerate(hitset):
mltset[i] += tcoe*mv
nset = normspec(mltset)
cf = simpleresiduals(dlset, nset)
res.append((key, cf))
cnt += 1
printProgressBar(cnt, tc, prefix='Progress:',
suffix='Complete', length=50)
if cnt != tc:
print()
res.sort(key=lambda x: x[1])
temp = res[0]
mlu = bmtfa(mlt)
tlistm.append((temp[0], tcoe))
mlu.hpt = temp[0]
mlt.cf = temp[1]
mlu.tmplist = tlistm
mlu.appendc('T only')
return mlu
def corrdoub(exps: List[float], tempcen: multitemp_obj) -> multitemp_obj:
"""_summary_
Args:
exps (List[float]): _description_
tempcen (multitemp_obj): _description_
Returns:
multitemp_obj: _description_
"""
dlset = normspec(exps)
dlset_max_ind = dlset.index(max(dlset))
dlset_maxes = flm(dlset, 5)
dlset_prev_max_ind = dlset_maxes[dlset_maxes.index(dlset_max_ind)-1]
hitset = normspec(tempcen.get_spec(len(dlset))[0])
temp_max_ind = hitset.index(max(hitset))
temp_maxes = flm(hitset, 5)
temp_prev_max_ind = temp_maxes[temp_maxes.index(temp_max_ind)-1]
delay = (temp_prev_max_ind-dlset_prev_max_ind)*tempcen.dvn/len(dlset)
nte = bmtfa(tempcen)
nte.vn = tempcen.vn + delay + delay + delay
nte.dvn = tempcen.dvn - 2*delay - delay - 2*delay
simsp = normspec(nte.get_spec(len(dlset))[0])
cf = simpleresiduals(dlset, simsp)
nte.cf = cf
nte.appendc('2nd max correct')
return nte
def calcresiduals(sp1: List[float], sp2: List[float]) -> Tuple[List[float], List[float], float]:
"""_summary_
Args:
sp1 (List[float]): _description_
sp2 (List[float]): _description_
Returns:
Tuple[List[float], List[float], float]: _description_
"""
res1 = []
res2 = []
res3: float = 0.0
for i, valsp1 in enumerate(sp1):
if maxo(valsp1, sp2[i]) != 0:
res1.append(((valsp1-sp2[i])*100)/maxo(valsp1, sp2[i]))
else:
res1.append(0)
res2.append(valsp1-sp2[i])
res3 += (valsp1-sp2[i])**2
res3 = math.sqrt(res3/len(sp1))
res3 = math.sqrt(sum((res1[i])**2 for i in range(len(res1)))/len(res1))
return (res1, res2, res3)
def glfd(dic: Dict[int, float]) -> List[Tuple[int, float]]:
"""_summary_
Args:
dic (Dict[int, float]): _description_
Returns:
List[Tuple[int, float]]: _description_
"""
res: List[Tuple[int, float]] = []
for key, val in dic.items():
res.append((key, val))
return res
def corrdt2(expspecq: List[float], speccs: SPP, tempcen: multitemp_obj, tempreq: Union[Dict[int, float], None], itrq: Tuple[int, float, float]) -> multitemp_obj:
"""_summary_
Args:
expspecq (List[float]): _description_
speccs (SPP): _description_
tempcen (multitemp_obj): _description_
tempreq (Union[Dict[int, float], None]): _description_
itrq (Tuple[int, float, float]): _description_
Returns:
multitemp_obj: _description_
"""
dlset = normspec(expspecq)
reqsimsp = {}
sumcf: float = 0.0
ittemp = itrq[0]
if tempreq is not None:
for tamp in tempreq.keys():
hs = HAPI_SPEC_REQ(GLOBAL_PRESSURE, tamp, tempcen.vn-0.5,
tempcen.vn+tempcen.dvn+0.5)
if tempcen.non_linear:
reqsimsp[tamp] = intrnl(
getspec(hs), tempcen.center, tempcen.nlp, len(expspecq))[0]
else:
reqsimsp[tamp] = intr(
getspec(hs), tempcen.vn, tempcen.vn+tempcen.dvn, len(expspecq))[0]
sumcf += tempreq[tamp]
else:
sumcf = 0
hs = HAPI_SPEC_REQ(GLOBAL_PRESSURE, ittemp, tempcen.vn-0.5, tempcen.vn+tempcen.dvn+0.5)
if tempcen.non_linear:
reqsimsp[ittemp] = intrnl(
getspec(hs), tempcen.center, tempcen.nlp, len(expspecq))[0]
else:
reqsimsp[ittemp] = intr(
getspec(hs), tempcen.vn, tempcen.vn+tempcen.dvn, len(expspecq))[0]
cnt = 0
res: List[Tuple[int, Dict[int, float], float]] = []
tc = round(len(speccs)*itrq[1]/itrq[2])
printProgressBar(0, tc, prefix='Progress:', suffix='Complete', length=50)
for key in speccs.keys():
if tempcen.non_linear:
hitset = intrnl(speccs[key], tempcen.center,
tempcen.nlp, len(expspecq))[0]
else:
hitset = intr(speccs[key], tempcen.vn,
tempcen.vn+tempcen.dvn, len(expspecq))[0]
tmp: float = itrq[1]
while tmp >= 0:
doubspec = []
for j in range(len(dlset)):
sumx = hitset[j]*(1-sumcf-tmp)
if tempreq is not None:
for k in tempreq.keys():
sumx += reqsimsp[k][j]*tempreq[k]
sumx += reqsimsp[ittemp][j]*tmp
doubspec.append(sumx)
doubspec = normspec(doubspec)
cf = simpleresiduals(dlset, doubspec)
if tempreq is not None:
newadict = tempreq
else:
newadict = {}
newadict.update([(key, 1-sumcf-tmp), (ittemp, tmp)])
res.append((key, newadict, cf))
cnt += 1
printProgressBar(cnt, tc, prefix='Progress:',
suffix='Complete', length=50)
tmp -= itrq[2]
if cnt != tc:
print()
res.sort(key=lambda x: x[2])
temd = res[0]
nte = bmtfa(tempcen)
nte.tmplist = glfd(temd[1])
nte.hpt = temd[0]
nte.cf = temd[2]
nte.appendc('Multiple T(T&coeff)')
return nte
def opa2(expspec: List[float], temp: multitemp_obj) -> multitemp_obj:
"""_summary_
Args:
expspec (List[float]): _description_
temp (multitemp_obj): _description_